Vertex and region colourings of planar idempotent divisor graphs of commutative rings

被引:0
|
作者
Authman M.N. [1 ]
Mohammad H.Q. [1 ]
Shuker N.H. [1 ]
机构
[1] Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul
关键词
idempotent divisor graph; idempotent elements; planar graph; Zero divisor graph;
D O I
10.52866/ijcsm.2022.01.01.008
中图分类号
学科分类号
摘要
The idempotent divisor graph of a commutative ring R is a graph with vertices set in R * = R-{0}, and any distinct vertices x and y are adjacent if and only if x.y = e. For some non-unit idempotent element e2 = e ∈ R, it is denoted by Π(R). The purpose of this work is to use some properties of ring theory and graph theory to determine the clique number, the chromatic number and the region chromatic number for each planar idempotent divisor graph of the commutative rings. furthermore, we show that the clique number is equal to the chromatic number for any planar idempotent divisor graph. Results indicate that when Fq and Fαp are fields of orders q and pα, respectively, where q=2 or 3, p is a prime number and is a positive integer. If ring R ∼= Fq ×Fpα, then χ(Π(R)) = ω(Π(R)) = χ∗(Π(R)) = 3. © 2022 Iraqi Journal for Computer Science and Mathematics. All rights reserved.
引用
收藏
页码:71 / 82
页数:11
相关论文
共 50 条
  • [21] On zero-divisor graphs of small finite commutative rings
    Redmond, Shane P.
    DISCRETE MATHEMATICS, 2007, 307 (9-10) : 1155 - 1166
  • [22] Signed Zero-Divisor Graphs Over Commutative Rings
    Lu, Lu
    Feng, Lihua
    Liu, Weijun
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024, 12 (03) : 463 - 477
  • [23] Weak Zero-Divisor Graphs of Finite Commutative Rings
    Beaugris, L.
    Flores, M.
    Galing, C.
    Velasquez, A.
    Tejada, E.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (01): : 1 - 8
  • [24] ON THE TOPOLOGICAL INDICES OF ZERO DIVISOR GRAPHS OF SOME COMMUTATIVE RINGS
    Maulana, Fariz
    Aditya, Muhammad Zulfikar
    Suwastika, Erma
    Muchtadi-Alamsyah, Intan
    Alimon, Nur Idayu
    Sarmin, Nor Haniza
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 663 - 680
  • [25] Eigenvalues of zero-divisor graphs of finite commutative rings
    Moenius, Katja
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (03) : 787 - 802
  • [26] On domination numbers of zero-divisor graphs of commutative rings
    Anderson, Sarah E.
    Axtell, Michael C.
    Kroschel, Brenda K.
    Stickles, Joe A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (02) : 169 - 180
  • [27] CUT STRUCTURES IN ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS
    Axtell, M.
    Baeth, N.
    Stickles, J.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (02) : 143 - 171
  • [28] Zero-Divisor Graphs of Matrices Over Commutative Rings
    Bozic, Ivana
    Petrovic, Zoran
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1186 - 1192
  • [29] Sombor index of zero-divisor graphs of commutative rings
    Gursoy, Arif
    Ulker, Alper
    Kircali Gursoy, Necla
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 231 - 257
  • [30] The embedding of line graphs associated to the zero-divisor graphs of commutative rings
    Hung-Jen Chiang-Hsieh
    Pei-Feng Lee
    Hsin-Ju Wang
    Israel Journal of Mathematics, 2010, 180 : 193 - 222