A Boolean power S of a commutative ring R has the structure of a commutative R-algebra, and with respect to this structure, each element of S can be written uniquely as an R-linear combination of orthogonal idempotents so that the sum of the idempotents is 1 and their coefficients are distinct. In order to formalize this decomposition property, we introduce the concept of a Specker R-algebra, and we prove that the Boolean powers of R are up to isomorphism precisely the Specker Ralgebras. We also show that these algebras are characterized in terms of a functorial construction having roots in the work of Bergman and Rota. When R is indecomposable, we prove that S is a Specker R-algebra iff S is a projective R-module, thus strengthening a theorem of Bergman, and when R is a domain, we show that S is a Specker R-algebra iff S is a torsion-free R-module.