Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study

被引:0
|
作者
Bingsheng Huang
Jifei Wang
Meili Sun
Xin Chen
Danyang Xu
Zi-Ping Li
Jinting Ma
Shi-Ting Feng
Zhenhua Gao
机构
[1] Shenzhen University,Medical AI Lab, School of Biomedical Engineering, Health Science Centre
[2] Shenzhen University General Hospital Clinical Research Centre for Neurological Diseases,Department of Radiology
[3] the First Affiliated Hospital,Department of Medical Imaging and Interventional Radiology
[4] Sun Yat-Sen University,National
[5] Sun Yat-Sen University Cancer Centre,Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Medicine
[6] State Key Laboratory of Oncology in South China,undefined
[7] Collaborative Innovation Centre for Cancer Medicine,undefined
[8] Shenzhen University,undefined
来源
BMC Cancer | / 20卷
关键词
Osteosarcoma; Random forest; MRI; Neoadjuvant chemotherapy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Preliminary study of early response to neoadjuvant chemotherapy after the first cycle in breast cancer: comparison of 1H magnetic resonance spectroscopy with diffusion magnetic resonance imaging
    Tozaki, Mitsuhiro
    Oyama, Yu
    Fukuma, Eisuke
    JAPANESE JOURNAL OF RADIOLOGY, 2010, 28 (02) : 101 - 109
  • [42] Preliminary study of early response to neoadjuvant chemotherapy after the first cycle in breast cancer: comparison of 1H magnetic resonance spectroscopy with diffusion magnetic resonance imaging
    Mitsuhiro Tozaki
    Yu Oyama
    Eisuke Fukuma
    Japanese Journal of Radiology, 2010, 28 : 101 - 109
  • [43] Multi-Parametric Chest Magnetic Resonance Imaging for Assessment of Local Recurrence of Non-Small Cell Lung Cancer after Stereotactic Body Radiation Therapy
    Appel, S.
    Kirshenboim, Z.
    Lantsman, C. Dan
    Klung, M.
    Onn, A.
    Marom, E.
    Ben-Ayun, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E3 - E4
  • [44] Predicting peritumoral glioblastoma infiltration and subsequent recurrence using deep-learning-based analysis of multi-parametric magnetic resonance imaging
    Kwak, Sunwoo
    Akbari, Hamed
    Garcia, Jose A.
    Mohan, Suyash
    Dicker, Yehuda
    Sako, Chiharu
    Matsumoto, Yuji
    Nasrallah, MacLean P.
    Shalaby, Mahmoud
    O'Rourke, Donald M.
    Shinohara, Russel T.
    Liu, Fang
    Badve, Chaitra
    Barnholtz-Sloan, Jill S.
    Sloan, Andrew E.
    Lee, Matthew
    Jain, Rajan
    Cepeda, Santiago
    Chakravarti, Arnab
    Palmer, Joshua D.
    Dicker, Adam P.
    Shukla, Gaurav
    Flanders, Adam E.
    Shi, Wenyin
    Woodworth, Graeme F.
    Davatzikos, Christos
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (05)
  • [45] Utility of Multi-Parametric Quantitative Magnetic Resonance Imaging for Characterization and Radiotherapy Response Assessment in Soft-Tissue Sarcomas and Correlation With Histopathology
    Winfield, Jessica M.
    Miah, Aisha B.
    Strauss, Dirk
    Thway, Khin
    Collins, David J.
    deSouza, Nandita M.
    Leach, Martin O.
    Morgan, Veronica A.
    Giles, Sharon L.
    Moskovic, Eleanor
    Hayes, Andrew
    Smith, Myles
    Zaidi, Shane H.
    Henderson, Daniel
    Messiou, Christina
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [46] In vivo assessment of pediatric kidney function using multi-parametric and multi-nuclear functional magnetic resonance imaging: challenges, perspectives, and clinical applications
    De Mul, Aurelie
    Schleef, Maxime
    Filler, Guido
    Mcintyre, Christopher
    Lemoine, Sandrine
    PEDIATRIC NEPHROLOGY, 2024, : 1539 - 1548
  • [47] Multi-parametric magnetic resonance imaging in the diagnosis and characterization of prostate cancer prior to first biopsy in men at risk: The PROMIS study
    Ahmed, H. U.
    Gabe, R.
    Kaplan, R.
    Parker, C.
    Emberton, M.
    EUROPEAN UROLOGY SUPPLEMENTS, 2012, 11 (01) : E824 - U743
  • [48] Distinguishing between paediatric brain tumour types using multi- parametric magnetic resonance imaging and machine learning: A multi-site study
    Grist, James T.
    Withey, Stephanie
    MacPherson, Lesley
    Oates, Adam
    Powell, Stephen
    Novak, Jan
    Abernethy, Laurence
    Pizer, Barry
    Grundy, Richard
    Bailey, Simon
    Mitra, Dipayan
    Arvanitis, Theodoros N.
    Auer, Dorothee P.
    Avula, Shivaram
    Peet, Andrew C.
    NEUROIMAGE-CLINICAL, 2020, 25
  • [49] Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis
    Liang, Xueheng
    Yu, Xingyan
    Gao, Tianhu
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 150
  • [50] Radiomics nomogram based on multi-parametric magnetic resonance imaging for predicting early recurrence in small hepatocellular carcinoma after radiofrequency ablation
    Zhang, Xiaojuan
    Wang, Chuandong
    Zheng, Dan
    Liao, Yuting
    Wang, Xiaoyang
    Huang, Zhifeng
    Zhong, Qun
    FRONTIERS IN ONCOLOGY, 2022, 12