Distinguishing between paediatric brain tumour types using multi- parametric magnetic resonance imaging and machine learning: A multi-site study

被引:29
|
作者
Grist, James T. [1 ]
Withey, Stephanie [1 ,2 ,3 ]
MacPherson, Lesley [4 ]
Oates, Adam [4 ]
Powell, Stephen [1 ]
Novak, Jan [2 ,5 ]
Abernethy, Laurence [6 ]
Pizer, Barry [7 ]
Grundy, Richard [8 ]
Bailey, Simon [9 ]
Mitra, Dipayan [10 ]
Arvanitis, Theodoros N. [1 ,2 ,11 ]
Auer, Dorothee P. [12 ,13 ]
Avula, Shivaram [6 ]
Peet, Andrew C. [1 ,2 ]
机构
[1] Univ Birmingham, Sch Med & Dent Sci, Inst Canc & Genom Sci, Birmingham, W Midlands, England
[2] Birmingham Womens & Childrens NHS Fdn Trust, Oncol, Birmingham, W Midlands, England
[3] Univ Hosp Birmingham NHS Fdn Trust, RRPPS, Birmingham, W Midlands, England
[4] Birmingham Womens & Childrens NHS Fdn Trust, Radiol, Birmingham, W Midlands, England
[5] Aston Univ, Sch Life & Hlth Sci, Dept Psychol, Birmingham, W Midlands, England
[6] Alder Hey Childrens NHS Fdn Trust, Radiol, Liverpool, Merseyside, England
[7] Univ Liverpool, Inst Translat Med, Liverpool, Merseyside, England
[8] Univ Nottingham, Childrens Brain Tumour Res Ctr, Nottingham, England
[9] Royal Victoria Infirm, Sir James Spence Inst Child Hlth, Newcastle Upon Tyne, Tyne & Wear, England
[10] Royal Victoria Infirm, Neuroradiol, Newcastle Upon Tyne, Tyne & Wear, England
[11] Univ Warwick, WMG, Inst Digital Healthcare, Coventry, W Midlands, England
[12] Univ Nottingham, Biomed Res Ctr, Sir Peter Mansfield Imaging Ctr, Nottingham, England
[13] NIHR Nottingham Biomed Res Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国经济与社会研究理事会; 英国惠康基金;
关键词
Perfusion; Diffusion; Machine learning; MRI;
D O I
10.1016/j.nicl.2020.102172
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modally. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with > 80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
    James T. Grist
    Stephanie Withey
    Christopher Bennett
    Heather E. L. Rose
    Lesley MacPherson
    Adam Oates
    Stephen Powell
    Jan Novak
    Laurence Abernethy
    Barry Pizer
    Simon Bailey
    Steven C. Clifford
    Dipayan Mitra
    Theodoros N. Arvanitis
    Dorothee P. Auer
    Shivaram Avula
    Richard Grundy
    Andrew C. Peet
    Scientific Reports, 11
  • [2] Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
    Grist, James T.
    Withey, Stephanie
    Bennett, Christopher
    Rose, Heather E. L.
    MacPherson, Lesley
    Oates, Adam
    Powell, Stephen
    Novak, Jan
    Abernethy, Laurence
    Pizer, Barry
    Bailey, Simon
    Clifford, Steven C.
    Mitra, Dipayan
    Arvanitis, Theodoros N.
    Auer, Dorothee P.
    Avula, Shivaram
    Grundy, Richard
    Peet, Andrew C.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Multi-modal magnetic resonance imaging protocols in the multi-site brain involvement in dystrophinopathies (BIND) study
    Govaarts, R.
    Doorenweerd, N.
    Brogna, C.
    Clark, C.
    Guliaeva, I.
    Hollingsworth, K.
    Fisher, P. MacDonald
    Mercuri, E.
    Niks, E.
    Parikh, J.
    Seunarine, K.
    Smythe, L.
    Stemmerik, M.
    Straub, V.
    Verdolotti, T.
    Vissing, J.
    Slipsager, A. Wurgler
    Muntoni, F.
    Kan, H.
    Kerkela, L.
    NEUROMUSCULAR DISORDERS, 2024, 43
  • [4] Visualization of sodium dynamics in the kidney by magnetic resonance imaging in a multi-site study
    Grist, James T.
    Riemer, Frank
    Hansen, Esben S. S.
    Tougaard, Rasmus S.
    McLean, Mary A.
    Kaggie, Joshua
    Bogh, Nikolaj
    Graves, Martin J.
    Gallagher, Ferdia A.
    Laustsen, Christoffer
    KIDNEY INTERNATIONAL, 2020, 98 (05) : 1174 - 1178
  • [5] Harmonization of Multi-Site Diffusion Magnetic Resonance Imaging Data From the Adolescent Brain Cognitive Development Study
    Cetin-Karayumak, Suheyla
    Zhang, Fan
    O'Donnell, Lauren J.
    Rathi, Yogesh
    BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S84 - S84
  • [6] Multi-Site Mild Traumatic Brain Injury Classification with Machine Learning and Harmonization
    Bostami, Biozid
    Espinoza, Flor A.
    van der Horn, Harm J.
    van der Naalt, Joukje
    Calhoun, Vince D.
    Vergara, Victor M.
    2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2022, : 537 - 540
  • [7] Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets
    Bento, Mariana
    Fantini, Irene
    Park, Justin
    Rittner, Leticia
    Frayne, Richard
    FRONTIERS IN NEUROINFORMATICS, 2022, 15
  • [8] Learning multi-site harmonization of magnetic resonance images without traveling human phantoms
    Siyuan Liu
    Pew-Thian Yap
    Communications Engineering, 3 (1):
  • [9] Multi-site structural damage identification using a multi-label classification scheme of machine learning
    Zhang, Zhiming
    Sun, Chao
    MEASUREMENT, 2020, 154
  • [10] Hirni: Segmentation of Brain Tumors in Multi-parametric Magnetic Resonance Imaging Scans
    Mejia, Gabriel
    Moreno, Danniel
    Ruiz, Daniela
    Aparicio, Nicolas
    2021 IEEE 2ND INTERNATIONAL CONGRESS OF BIOMEDICAL ENGINEERING AND BIOENGINEERING (CI-IB&BI 2021), 2021,