Distinguishing between paediatric brain tumour types using multi- parametric magnetic resonance imaging and machine learning: A multi-site study

被引:29
|
作者
Grist, James T. [1 ]
Withey, Stephanie [1 ,2 ,3 ]
MacPherson, Lesley [4 ]
Oates, Adam [4 ]
Powell, Stephen [1 ]
Novak, Jan [2 ,5 ]
Abernethy, Laurence [6 ]
Pizer, Barry [7 ]
Grundy, Richard [8 ]
Bailey, Simon [9 ]
Mitra, Dipayan [10 ]
Arvanitis, Theodoros N. [1 ,2 ,11 ]
Auer, Dorothee P. [12 ,13 ]
Avula, Shivaram [6 ]
Peet, Andrew C. [1 ,2 ]
机构
[1] Univ Birmingham, Sch Med & Dent Sci, Inst Canc & Genom Sci, Birmingham, W Midlands, England
[2] Birmingham Womens & Childrens NHS Fdn Trust, Oncol, Birmingham, W Midlands, England
[3] Univ Hosp Birmingham NHS Fdn Trust, RRPPS, Birmingham, W Midlands, England
[4] Birmingham Womens & Childrens NHS Fdn Trust, Radiol, Birmingham, W Midlands, England
[5] Aston Univ, Sch Life & Hlth Sci, Dept Psychol, Birmingham, W Midlands, England
[6] Alder Hey Childrens NHS Fdn Trust, Radiol, Liverpool, Merseyside, England
[7] Univ Liverpool, Inst Translat Med, Liverpool, Merseyside, England
[8] Univ Nottingham, Childrens Brain Tumour Res Ctr, Nottingham, England
[9] Royal Victoria Infirm, Sir James Spence Inst Child Hlth, Newcastle Upon Tyne, Tyne & Wear, England
[10] Royal Victoria Infirm, Neuroradiol, Newcastle Upon Tyne, Tyne & Wear, England
[11] Univ Warwick, WMG, Inst Digital Healthcare, Coventry, W Midlands, England
[12] Univ Nottingham, Biomed Res Ctr, Sir Peter Mansfield Imaging Ctr, Nottingham, England
[13] NIHR Nottingham Biomed Res Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国经济与社会研究理事会; 英国惠康基金;
关键词
Perfusion; Diffusion; Machine learning; MRI;
D O I
10.1016/j.nicl.2020.102172
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modally. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with > 80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
    Vladimir Belov
    Tracy Erwin-Grabner
    Moji Aghajani
    Andre Aleman
    Alyssa R. Amod
    Zeynep Basgoze
    Francesco Benedetti
    Bianca Besteher
    Robin Bülow
    Christopher R. K. Ching
    Colm G. Connolly
    Kathryn Cullen
    Christopher G. Davey
    Danai Dima
    Annemiek Dols
    Jennifer W. Evans
    Cynthia H. Y. Fu
    Ali Saffet Gonul
    Ian H. Gotlib
    Hans J. Grabe
    Nynke Groenewold
    J Paul Hamilton
    Ben J. Harrison
    Tiffany C. Ho
    Benson Mwangi
    Natalia Jaworska
    Neda Jahanshad
    Bonnie Klimes-Dougan
    Sheri-Michelle Koopowitz
    Thomas Lancaster
    Meng Li
    David E. J. Linden
    Frank P. MacMaster
    David M. A. Mehler
    Elisa Melloni
    Bryon A. Mueller
    Amar Ojha
    Mardien L. Oudega
    Brenda W. J. H. Penninx
    Sara Poletti
    Edith Pomarol-Clotet
    Maria J. Portella
    Elena Pozzi
    Liesbeth Reneman
    Matthew D. Sacchet
    Philipp G. Sämann
    Anouk Schrantee
    Kang Sim
    Jair C. Soares
    Dan J. Stein
    Scientific Reports, 14
  • [22] Machine Learning of Infant Spontaneous Movements for the Early Prediction of Cerebral Palsy: A Multi-Site Cohort Study
    Ihlen, Espen A. F.
    Stoen, Ragnhild
    Boswell, Lynn
    de Regnier, Raye-Ann
    Fjortoft, Toril
    Gaebler-Spira, Deborah
    Labori, Cathrine
    Loennecken, Marianne C.
    Msall, Michael E.
    Moinichen, Unn I.
    Peyton, Colleen
    Schreiber, Michael D.
    Silberg, Inger E.
    Songstad, Nils T.
    Vagen, Randi T.
    Oberg, Gunn K.
    Adde, Lars
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (01)
  • [23] MULTI INSTITUTIONAL STUDY ON MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING/ULTRASOUND FUSION BIOPSY, ARE WE GETTING BETTER?
    Phin, Wei
    Hwang, Thomas
    Gande, Mukund
    Dalton, Daniel
    Yonover, Paul
    Latchamsetty, Kalyan
    Coogan, Christopher
    JOURNAL OF UROLOGY, 2017, 197 (04): : E97 - E97
  • [24] A Multi-Parametric Investigation on Waterlogged Wood Using a Magnetic Resonance Imaging Clinical Scanner
    Longo, Sveva
    Egizi, Federica
    Stagno, Valeria
    Di Trani, Maria Giovanna
    Marchelletta, Gianni
    Gili, Tommaso
    Fazio, Enza
    Favero, Gabriele
    Capuani, Silvia
    FORESTS, 2023, 14 (02):
  • [25] DEEP LEARNING FRAMEWORK FOR EPITHELIUM DENSITY ESTIMATION IN PROSTATE MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING
    Minh Nguyen Nhat To
    Sankineni, Sandeep
    Xu, Sheng
    Turkbey, Baris
    Choyke, Peter L.
    Pinto, Peter A.
    Moreno, Vanessa
    Merino, Maria
    Wood, Bradford J.
    Kwak, Jin Tae
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 438 - 441
  • [26] Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer
    Pham, Trang Thanh
    Liney, Gary
    Wong, Karen
    Henderson, Christopher
    Rai, Robba
    Graham, Petra L.
    Borok, Nira
    Truong, Minh Xuan
    Lee, Mark
    Shin, Joo-Shik
    Hudson, Malcolm
    Barton, Michael B.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 18 : 26 - 33
  • [27] Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: Analysis from the North American Prodrome Longitudinal Study
    Forsyth, Jennifer K.
    McEwen, Sarah C.
    Gee, Dylan G.
    Bearden, Carrie E.
    Addington, Jean
    Goodyear, Brad
    Cadenhead, Kristin S.
    Mirzakhanian, Heline
    Cornblatt, Barbara A.
    Olvet, Doreen M.
    Mathalon, Daniel H.
    McGlashan, Thomas H.
    Perkins, Diana O.
    Belger, Aysenil
    Seidman, Larry J.
    Thermenos, Heidi W.
    Tsuang, Ming T.
    van Erp, Theo G. M.
    Walker, Elaine F.
    Hamann, Stephan
    Woods, Scott W.
    Qiu, Maolin
    Cannon, Tyrone D.
    NEUROIMAGE, 2014, 97 : 41 - 52
  • [28] Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma
    Nakagawa, Masataka
    Nakaura, Takeshi
    Namimoto, Tomohiro
    Kitajima, Mika
    Uetani, Hiroyuki
    Tateishi, Machiko
    Oda, Seitaro
    Utsunomiya, Daisuke
    Makino, Keishi
    Nakamura, Hideo
    Mukasa, Akitake
    Hirai, Toshinori
    Yamashita, Yasuyuki
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 108 : 147 - 154
  • [29] A DEEP LEARNING-BASED APPROACH FOR BRAIN TISSUE EXTRACTION USING MULTI- AND SINGLE-PARAMETRIC MRI IN PEDIATRICS
    Gandhi, Deep B.
    Gottipati, Anurag
    Tu, Wenxin
    Familiar, Ariana
    Haldar, Shuvanjan
    Khalili, Neda
    Jain, Paarth
    Viswanathan, Karthik
    Storm, Phillip B.
    Resnick, Adam C.
    Ware, Jeffrey B.
    Vossough, Arastoo
    Nabavizadeh, Ali
    Kazerooni, Anahita Fathi
    NEURO-ONCOLOGY, 2024, 26
  • [30] Gender effects on autism spectrum disorder: a multi-site resting-state functional magnetic resonance imaging study of transcriptome-neuroimaging
    Li, Yanling
    Li, Rui
    Wang, Ning
    Gu, Jiahe
    Gao, Jingjing
    FRONTIERS IN NEUROSCIENCE, 2023, 17