Distinguishing between paediatric brain tumour types using multi- parametric magnetic resonance imaging and machine learning: A multi-site study

被引:29
|
作者
Grist, James T. [1 ]
Withey, Stephanie [1 ,2 ,3 ]
MacPherson, Lesley [4 ]
Oates, Adam [4 ]
Powell, Stephen [1 ]
Novak, Jan [2 ,5 ]
Abernethy, Laurence [6 ]
Pizer, Barry [7 ]
Grundy, Richard [8 ]
Bailey, Simon [9 ]
Mitra, Dipayan [10 ]
Arvanitis, Theodoros N. [1 ,2 ,11 ]
Auer, Dorothee P. [12 ,13 ]
Avula, Shivaram [6 ]
Peet, Andrew C. [1 ,2 ]
机构
[1] Univ Birmingham, Sch Med & Dent Sci, Inst Canc & Genom Sci, Birmingham, W Midlands, England
[2] Birmingham Womens & Childrens NHS Fdn Trust, Oncol, Birmingham, W Midlands, England
[3] Univ Hosp Birmingham NHS Fdn Trust, RRPPS, Birmingham, W Midlands, England
[4] Birmingham Womens & Childrens NHS Fdn Trust, Radiol, Birmingham, W Midlands, England
[5] Aston Univ, Sch Life & Hlth Sci, Dept Psychol, Birmingham, W Midlands, England
[6] Alder Hey Childrens NHS Fdn Trust, Radiol, Liverpool, Merseyside, England
[7] Univ Liverpool, Inst Translat Med, Liverpool, Merseyside, England
[8] Univ Nottingham, Childrens Brain Tumour Res Ctr, Nottingham, England
[9] Royal Victoria Infirm, Sir James Spence Inst Child Hlth, Newcastle Upon Tyne, Tyne & Wear, England
[10] Royal Victoria Infirm, Neuroradiol, Newcastle Upon Tyne, Tyne & Wear, England
[11] Univ Warwick, WMG, Inst Digital Healthcare, Coventry, W Midlands, England
[12] Univ Nottingham, Biomed Res Ctr, Sir Peter Mansfield Imaging Ctr, Nottingham, England
[13] NIHR Nottingham Biomed Res Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国经济与社会研究理事会; 英国惠康基金;
关键词
Perfusion; Diffusion; Machine learning; MRI;
D O I
10.1016/j.nicl.2020.102172
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modally. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with > 80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Detecting Label Noise from Multi-site Structural Magnetic Resonance Imaging Data to Mitigate Inaccurate Nosology in Mental Health
    Rokham, Hooman
    Falakshahi, Haleh
    Plis, Sergey
    Calhoun, Vince
    BIOLOGICAL PSYCHIATRY, 2020, 87 (09) : S269 - S269
  • [42] Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer
    Trang Thanh Pham
    Gary Liney
    Karen Wong
    Robba Rai
    Mark Lee
    Daniel Moses
    Christopher Henderson
    Michael Lin
    Joo-Shik Shin
    Michael Bernard Barton
    BMC Cancer, 17
  • [43] Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer
    Trang Thanh Pham
    Liney, Gary
    Wong, Karen
    Rai, Robba
    Lee, Mark
    Moses, Daniel
    Henderson, Christopher
    Lin, Michael
    Shin, Joo-Shik
    Barton, Michael Bernard
    BMC CANCER, 2017, 17
  • [44] Multi-parametric magnetic resonance imaging characterization of orbital lesions: A triple-blind study
    Russo, Camilla
    Strianese, Diego
    Perrotta, Marianna
    Iuliano, Adriana
    Bernardo, Roberta
    Romeo, Valeria
    Ugga, Lorenzo
    Brunetti, Lisa
    Tranfa, Fausto
    Elefante, Andrea
    SEMINARS IN OPHTHALMOLOGY, 2020, 35 (02) : 95 - 102
  • [45] DISTINGUISHING LOW VERSUS HIGH RISK PROSTATE CANCER LESIONS USING RADIOMIC FEATURES DERIVED FROM MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING (MRI)
    Shiradkar, Rakesh
    Ghose, Soumya
    Villani, Robert
    Ben-Levi, Eran
    Rastinehad, Ardeshir
    Madabhushi, Anant
    JOURNAL OF UROLOGY, 2017, 197 (04): : E1269 - E1269
  • [46] Inter-site comparability of 4D flow cardiovascular magnetic resonance measurements in healthy traveling volunteers-a multi-site and multi-magnetic field strength study
    Mueller, Maximilian
    Daud, Elias
    Langer, Georg
    Groeschel, Jan
    Viezzer, Darian
    Hadler, Thomas
    Jin, Ning
    Giese, Daniel
    Schmitter, Sebastian
    Schulz-Menger, Jeanette
    Trauzeddel, Ralf F.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [47] A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging
    Cetin-Kaya, Yasemin
    Kaya, Mahir
    DIAGNOSTICS, 2024, 14 (04)
  • [48] Imaging of myocardial infarction using ultrasmall superparamagnetic iron oxide nanoparticles: a human study using a multi-parametric cardiovascular magnetic resonance imaging approach
    Yilmaz, Ali
    Dengler, Michael A.
    van der Kuip, Heiko
    Yildiz, Handan
    Roesch, Sabine
    Klumpp, Siegfried
    Klingel, Karin
    Kandolf, Reinhard
    Helluy, Xavier
    Hiller, Karl-Heinz
    Jakob, Peter M.
    Sechtem, Udo
    EUROPEAN HEART JOURNAL, 2013, 34 (06) : 462 - 475
  • [49] Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
    Adekkanattu, Prakash
    Rasmussen, Luke V.
    Pacheco, Jennifer A.
    Kabariti, Joseph
    Stone, Daniel J.
    Yu, Yue
    Jiang, Guoqian
    Luo, Yuan
    Brandt, Pascal S.
    Xu, Zhenxing
    Vekaria, Veer
    Xu, Jie
    Wang, Fei
    Benda, Natalie C.
    Peng, Yifan
    Goyal, Parag
    Ahmad, Faraz S.
    Pathak, Jyotishman
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study
    Prakash Adekkanattu
    Luke V. Rasmussen
    Jennifer A. Pacheco
    Joseph Kabariti
    Daniel J. Stone
    Yue Yu
    Guoqian Jiang
    Yuan Luo
    Pascal S. Brandt
    Zhenxing Xu
    Veer Vekaria
    Jie Xu
    Fei Wang
    Natalie C. Benda
    Yifan Peng
    Parag Goyal
    Faraz S. Ahmad
    Jyotishman Pathak
    Scientific Reports, 13