Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study

被引:0
|
作者
Bingsheng Huang
Jifei Wang
Meili Sun
Xin Chen
Danyang Xu
Zi-Ping Li
Jinting Ma
Shi-Ting Feng
Zhenhua Gao
机构
[1] Shenzhen University,Medical AI Lab, School of Biomedical Engineering, Health Science Centre
[2] Shenzhen University General Hospital Clinical Research Centre for Neurological Diseases,Department of Radiology
[3] the First Affiliated Hospital,Department of Medical Imaging and Interventional Radiology
[4] Sun Yat-Sen University,National
[5] Sun Yat-Sen University Cancer Centre,Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Medicine
[6] State Key Laboratory of Oncology in South China,undefined
[7] Collaborative Innovation Centre for Cancer Medicine,undefined
[8] Shenzhen University,undefined
来源
BMC Cancer | / 20卷
关键词
Osteosarcoma; Random forest; MRI; Neoadjuvant chemotherapy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer
    Trang Thanh Pham
    Gary Liney
    Karen Wong
    Robba Rai
    Mark Lee
    Daniel Moses
    Christopher Henderson
    Michael Lin
    Joo-Shik Shin
    Michael Bernard Barton
    BMC Cancer, 17
  • [22] Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy
    Lo Gullo, Roberto
    Eskreis-Winkler, Sarah
    Morris, Elizabeth A.
    Pinker, Katja
    BREAST, 2020, 49 : 115 - 122
  • [23] Non-invasive prediction of molecular subtype in glioblastoma using multi-parametric magnetic resonance imaging pattern analysis and machine learning
    Pisapia, Jared
    Macyszyn, Lukasz
    Akbari, Hamed
    Da, Xiao
    Attiah, Mark
    Bi, Yingtao
    Pal, Sharmistha
    Davaluri, Ramana
    Roccograndi, Laura
    Dahmane, Nadia
    Wolf, Ronald
    O'Rourke, Donald M.
    Davatzikos, Christos
    CANCER RESEARCH, 2015, 75
  • [24] Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer
    Trang Thanh Pham
    Liney, Gary
    Wong, Karen
    Rai, Robba
    Lee, Mark
    Moses, Daniel
    Henderson, Christopher
    Lin, Michael
    Shin, Joo-Shik
    Barton, Michael Bernard
    BMC CANCER, 2017, 17
  • [25] Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging
    Recuerda, Maximilien
    Perie, Delphine
    Gilbert, Guillaume
    Beaudoin, Gilles
    BMC MUSCULOSKELETAL DISORDERS, 2012, 13
  • [26] Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging
    Maximilien Recuerda
    Delphine Périé
    Guillaume Gilbert
    Gilles Beaudoin
    BMC Musculoskeletal Disorders, 13
  • [27] Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma
    Nakagawa, Masataka
    Nakaura, Takeshi
    Namimoto, Tomohiro
    Kitajima, Mika
    Uetani, Hiroyuki
    Tateishi, Machiko
    Oda, Seitaro
    Utsunomiya, Daisuke
    Makino, Keishi
    Nakamura, Hideo
    Mukasa, Akitake
    Hirai, Toshinori
    Yamashita, Yasuyuki
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 108 : 147 - 154
  • [28] MULTI INSTITUTIONAL STUDY ON MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING/ULTRASOUND FUSION BIOPSY, ARE WE GETTING BETTER?
    Phin, Wei
    Hwang, Thomas
    Gande, Mukund
    Dalton, Daniel
    Yonover, Paul
    Latchamsetty, Kalyan
    Coogan, Christopher
    JOURNAL OF UROLOGY, 2017, 197 (04): : E97 - E97
  • [29] Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol
    Boonsuth, Ratthaporn
    Battiston, Marco
    Grussu, Francesco
    Samlidou, Christina Maria
    Calvi, Alberto
    Samson, Rebecca S.
    Gandini Wheeler-Kingshott, Claudia A. M.
    Yiannakas, Marios C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol
    Ratthaporn Boonsuth
    Marco Battiston
    Francesco Grussu
    Christina Maria Samlidou
    Alberto Calvi
    Rebecca S. Samson
    Claudia A. M. Gandini Wheeler-Kingshott
    Marios C. Yiannakas
    Scientific Reports, 13