共 50 条
Characterizations of circle patterns and finite convex polyhedra in hyperbolic 3-space
被引:0
|作者:
Xiaojun Huang
Jinsong Liu
机构:
[1] Chongqing University,College of Mathematics and Statistics
[2] Chinese Academy of Sciences,Institute of Mathematics, AMSS, and HUA Loo
来源:
关键词:
52C26;
30F60;
30F15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The aim of this paper is to study finite convex polyhedra in three dimensional hyperbolic space H3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {H}}^3$$\end{document}. We characterize the quasiconformal deformation space of each finite convex polyhedron. As a corollary, we obtain some results on finite circle patterns in the Riemann sphere with dihedral angle0≤Θ<π\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\le \Theta < \pi $$\end{document}. That is, for any circle pattern on C^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\mathbb {C}}$$\end{document}, its quasiconformal deformation space can be naturally identified with the product of the Teichmüller spaces of its interstices.
引用
收藏
页码:213 / 231
页数:18
相关论文