Characterizations of circle patterns and finite convex polyhedra in hyperbolic 3-space

被引:0
|
作者
Xiaojun Huang
Jinsong Liu
机构
[1] Chongqing University,College of Mathematics and Statistics
[2] Chinese Academy of Sciences,Institute of Mathematics, AMSS, and HUA Loo
来源
Mathematische Annalen | 2017年 / 368卷
关键词
52C26; 30F60; 30F15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study finite convex polyhedra in three dimensional hyperbolic space H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^3$$\end{document}. We characterize the quasiconformal deformation space of each finite convex polyhedron. As a corollary, we obtain some results on finite circle patterns in the Riemann sphere with dihedral angle0≤Θ<π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \Theta < \pi $$\end{document}. That is, for any circle pattern on C^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\mathbb {C}}$$\end{document}, its quasiconformal deformation space can be naturally identified with the product of the Teichmüller spaces of its interstices.
引用
收藏
页码:213 / 231
页数:18
相关论文
共 50 条
  • [21] Flexible polyhedra in Minkowski 3-space
    Victor Alexandrov
    manuscripta mathematica, 2003, 111 : 341 - 356
  • [22] ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE
    Georgiou, Nikos
    Guilfoyle, Brendan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) : 1183 - 1219
  • [23] DIHEDRAL RIGIDITY IN HYPERBOLIC 3-SPACE
    Chai, Xiaoxiang
    Wang, Gaoming
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (02) : 807 - 840
  • [24] Flat surfaces in the hyperbolic 3-space
    Gálvez, JA
    Martínez, A
    Milán, F
    MATHEMATISCHE ANNALEN, 2000, 316 (03) : 419 - 435
  • [25] Flat surfaces in the hyperbolic 3-space
    José A. Gálvez
    Antonio Martínez
    Francisco Milán
    Mathematische Annalen, 2000, 316 : 419 - 435
  • [26] HOROCYCLIC SURFACES IN HYPERBOLIC 3-SPACE
    Takizawa, Chie
    Tsukada, Kazumi
    KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (02) : 269 - 284
  • [27] CMC surfaces in the hyperbolic 3-space
    Yu, Z.
    Li, Z.
    Chinese Science Bulletin, 43 (07):
  • [28] CMC surfaces in the hyperbolic 3-space
    YU Zuhuan 1
    2. Department of Mathematics
    3. Department of Mathematics
    ChineseScienceBulletin, 1998, (07) : 547 - 550
  • [29] HYPERBALL PACKINGS IN HYPERBOLIC 3-SPACE
    Szirmai, Jeno
    MATEMATICKI VESNIK, 2018, 70 (03): : 211 - 221
  • [30] Coding Billiards in Hyperbolic 3-Space
    Singh, Pradeep
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (04)