ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE

被引:20
|
作者
Georgiou, Nikos [1 ]
Guilfoyle, Brendan [1 ]
机构
[1] Inst Technol, Dept Math, Tralee, Co Kerry, Ireland
关键词
Kaehler structure; hyperbolic; 3-space; isometry group; GEOMETRY; SURFACES; LINES;
D O I
10.1216/RMJ-2010-40-4-1183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a kahler structure (J, Omega, G) on the space L (H-3) of oriented geodesics of hyperbolic 3-space H-3 and investigate its properties. We prove that (L(H-3), J) is biholomorphic to P-1 x P-1 - (Delta) over bar, where (Delta) over bar is the reflected diagonal, and that the Kahler metric G is of neutral signature, conformally flat and scalar flat. We establish that the identity component of the isometry group of the metric G on L (H-3) is isomorphic to the identity component of the hyperbolic isometry group. Finally, we show that the geodesics of G correspond to ruled minimal surfaces in H-3, which are totally geodesic if and only if the geodesics are null.
引用
收藏
页码:1183 / 1219
页数:37
相关论文
共 50 条
  • [1] ON AREA STATIONARY SURFACES IN THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE
    Georgiou, Nikos
    MATHEMATICA SCANDINAVICA, 2012, 111 (02) : 187 - 209
  • [2] On the geodesics of tubular surfaces in Minkowski 3-space
    Karacan, Murat Kemal
    Yayli, Yusuf
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2008, 31 (01) : 1 - 10
  • [3] ON GEODESICS OF FRAMED SURFACES IN THE EUCLIDEAN 3-SPACE
    Takahashi, Masatomo
    TOHOKU MATHEMATICAL JOURNAL, 2024, 76 (02) : 199 - 215
  • [4] Hyperideal polyhedra in hyperbolic 3-space
    Bao, XL
    Bonahon, F
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (03): : 457 - 491
  • [5] Flat surfaces in the hyperbolic 3-space
    Gálvez, JA
    Martínez, A
    Milán, F
    MATHEMATISCHE ANNALEN, 2000, 316 (03) : 419 - 435
  • [6] DIHEDRAL RIGIDITY IN HYPERBOLIC 3-SPACE
    Chai, Xiaoxiang
    Wang, Gaoming
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (02) : 807 - 840
  • [7] Flat surfaces in the hyperbolic 3-space
    José A. Gálvez
    Antonio Martínez
    Francisco Milán
    Mathematische Annalen, 2000, 316 : 419 - 435
  • [8] HOROCYCLIC SURFACES IN HYPERBOLIC 3-SPACE
    Takizawa, Chie
    Tsukada, Kazumi
    KYUSHU JOURNAL OF MATHEMATICS, 2009, 63 (02) : 269 - 284
  • [9] CMC surfaces in the hyperbolic 3-space
    Yu, Z.
    Li, Z.
    Chinese Science Bulletin, 43 (07):
  • [10] CMC surfaces in the hyperbolic 3-space
    YU Zuhuan 1
    2. Department of Mathematics
    3. Department of Mathematics
    ChineseScienceBulletin, 1998, (07) : 547 - 550