Characterizations of circle patterns and finite convex polyhedra in hyperbolic 3-space

被引:0
|
作者
Xiaojun Huang
Jinsong Liu
机构
[1] Chongqing University,College of Mathematics and Statistics
[2] Chinese Academy of Sciences,Institute of Mathematics, AMSS, and HUA Loo
来源
Mathematische Annalen | 2017年 / 368卷
关键词
52C26; 30F60; 30F15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study finite convex polyhedra in three dimensional hyperbolic space H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^3$$\end{document}. We characterize the quasiconformal deformation space of each finite convex polyhedron. As a corollary, we obtain some results on finite circle patterns in the Riemann sphere with dihedral angle0≤Θ<π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \Theta < \pi $$\end{document}. That is, for any circle pattern on C^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\mathbb {C}}$$\end{document}, its quasiconformal deformation space can be naturally identified with the product of the Teichmüller spaces of its interstices.
引用
收藏
页码:213 / 231
页数:18
相关论文
共 50 条
  • [31] CMC surfaces in the hyperbolic 3-space
    Yu, ZH
    Li, ZQ
    CHINESE SCIENCE BULLETIN, 1998, 43 (07): : 547 - 550
  • [32] On the quandles of isometries of the hyperbolic 3-space
    Kai, Ryoya
    GEOMETRIAE DEDICATA, 2025, 219 (02)
  • [33] Flat fronts in hyperbolic 3-space
    Kokubu, M
    Umehara, M
    Yamada, K
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (01) : 149 - 175
  • [34] Rigid Ball-Polyhedra in Euclidean 3-Space
    Bezdek, Karoly
    Naszodi, Marton
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (02) : 189 - 199
  • [35] INFINITE SERIES OF COMBINATORIALLY REGULAR POLYHEDRA IN 3-SPACE
    MCMULLEN, P
    SCHULTE, E
    WILLS, JM
    GEOMETRIAE DEDICATA, 1988, 26 (03) : 299 - 307
  • [36] Rigidity of ball-polyhedra in Euclidean 3-space
    Bezdek, K
    Naszódi, M
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (02) : 255 - 268
  • [37] Characterizations of Adjoint Curves in Euclidean 3-Space
    Nurkan, Semra Kaya
    Guven, Ilkay Arslan
    Karacan, Murat Kemal
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2019, 89 (01) : 155 - 161
  • [38] Characterizations of slant helices in Euclidean 3-space
    Kula, L.
    Ekmekci, N.
    Yayli, Y.
    Ilarslan, K.
    TURKISH JOURNAL OF MATHEMATICS, 2010, 34 (02) : 261 - 273
  • [39] Characterizations of Adjoint Curves in Euclidean 3-Space
    Semra Kaya Nurkan
    İlkay Arslan Güven
    Murat Kemal Karacan
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019, 89 : 155 - 161
  • [40] Rotational Weingarten surfaces in hyperbolic 3-space
    Dursun, Ugur
    JOURNAL OF GEOMETRY, 2020, 111 (01)