The aim of this paper is to study finite convex polyhedra in three dimensional hyperbolic space H3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {H}}^3$$\end{document}. We characterize the quasiconformal deformation space of each finite convex polyhedron. As a corollary, we obtain some results on finite circle patterns in the Riemann sphere with dihedral angle0≤Θ<π\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\le \Theta < \pi $$\end{document}. That is, for any circle pattern on C^\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{\mathbb {C}}$$\end{document}, its quasiconformal deformation space can be naturally identified with the product of the Teichmüller spaces of its interstices.
机构:
Tokyo Denki Univ, Sch Engn, Dept Nat Sci, Chiyoda Ku, Tokyo 1018457, JapanTokyo Denki Univ, Sch Engn, Dept Nat Sci, Chiyoda Ku, Tokyo 1018457, Japan
Kokubu, M
Umehara, M
论文数: 0引用数: 0
h-index: 0
机构:Tokyo Denki Univ, Sch Engn, Dept Nat Sci, Chiyoda Ku, Tokyo 1018457, Japan
Umehara, M
Yamada, K
论文数: 0引用数: 0
h-index: 0
机构:Tokyo Denki Univ, Sch Engn, Dept Nat Sci, Chiyoda Ku, Tokyo 1018457, Japan
机构:
Isik Univ, Fac Arts & Sci, Dept Math, Sile Campus, TR-34980 Sile Istanbul, TurkeyIsik Univ, Fac Arts & Sci, Dept Math, Sile Campus, TR-34980 Sile Istanbul, Turkey