Diophantine Triples and k-Generalized Fibonacci Sequences

被引:0
|
作者
Clemens Fuchs
Christoph Hutle
Florian Luca
László Szalay
机构
[1] University of Salzburg,
[2] University of Witwatersrand,undefined
[3] Centro de Ciencias Matemáticas UNAM,undefined
[4] J. Selye University,undefined
[5] University of West Hungary,undefined
关键词
Diophantine triples; Generalized Fibonacci numbers; Diophantine equations; Application of the Subspace theorem; 11D72; 11B39; 11J87;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1<a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a<b<c$$\end{document} such that ab+1,ac+1,bc+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+1,~ac+1,~bc+1$$\end{document} are all members of {Fn(k):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{F_n^{(k)}: n\ge 1\big \}$$\end{document}. This generalizes a previous result where the statement for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} was proved. The result is ineffective since it is based on Schmidt’s subspace theorem.
引用
收藏
页码:1449 / 1465
页数:16
相关论文
共 50 条
  • [41] Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences
    Keskin, Refik
    Demirturk, Bahar
    ARS COMBINATORIA, 2013, 111 : 161 - 179
  • [42] On the k-generalized fibonacci numbers and high-order linear recurrence relations
    Yang, Sheng-liang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (02) : 850 - 857
  • [43] Solving Skolem's problem for the k-generalized Fibonacci sequence with negative indices
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2024, 257 : 273 - 299
  • [44] Families of Primitive Pythagorean Triples Involving Terms of Generalized Fibonacci and Lucas Sequences
    Omur, N.
    Sener, C. D.
    Koparal, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (04) : 45 - 59
  • [45] On the x-coordinates of Pell equations which are k-generalized Fibonacci numbers
    Ddamulira, Mahadi
    Luca, Florian
    JOURNAL OF NUMBER THEORY, 2020, 207 : 156 - 195
  • [46] A combinatoric proof and generalization of Ferguson's formula for k-generalized Fibonacci numbers
    Kessler, D
    Schiff, J
    FIBONACCI QUARTERLY, 2004, 42 (03): : 266 - 273
  • [47] Generalized Fibonacci and k-Pell Matrix Sequences
    Wani, Arfat Ahmad
    Badshah, V. H.
    Rathore, G. P. S.
    Catarino, Paula
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (01): : 17 - 28
  • [48] The 2-adic valuation of generalized Fibonacci sequences with an application to certain Diophantine equations
    Sobolewski, Bartosz
    JOURNAL OF NUMBER THEORY, 2017, 180 : 730 - 742
  • [49] A note on k-generalized projections
    Lebtahi, Leila
    Thome, Nestor
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 572 - 575
  • [50] On ∞-generalized Fibonacci sequences
    Motta, W
    Rachidi, M
    Saeki, O
    FIBONACCI QUARTERLY, 1999, 37 (03): : 223 - 232