Diophantine Triples and k-Generalized Fibonacci Sequences

被引:0
|
作者
Clemens Fuchs
Christoph Hutle
Florian Luca
László Szalay
机构
[1] University of Salzburg,
[2] University of Witwatersrand,undefined
[3] Centro de Ciencias Matemáticas UNAM,undefined
[4] J. Selye University,undefined
[5] University of West Hungary,undefined
关键词
Diophantine triples; Generalized Fibonacci numbers; Diophantine equations; Application of the Subspace theorem; 11D72; 11B39; 11J87;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1<a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a<b<c$$\end{document} such that ab+1,ac+1,bc+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+1,~ac+1,~bc+1$$\end{document} are all members of {Fn(k):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{F_n^{(k)}: n\ge 1\big \}$$\end{document}. This generalizes a previous result where the statement for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} was proved. The result is ineffective since it is based on Schmidt’s subspace theorem.
引用
收藏
页码:1449 / 1465
页数:16
相关论文
共 50 条
  • [21] AN EXPONENTIAL DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    COLLOQUIUM MATHEMATICUM, 2014, 137 (02) : 171 - 188
  • [22] Generalized Heisenberg algebras and k-generalized Fibonacci numbers
    Schork, Matthias
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (15) : 4207 - 4214
  • [23] On the representation of k-generalized Fibonacci and Lucas numbers
    Öcal, AA
    Tuglu, N
    Altinisik, E
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 584 - 596
  • [24] On the sum of the reciprocals of k-generalized Fibonacci numbers
    Alahmadi, Adel
    Luca, Florian
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 31 - 42
  • [25] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL, II
    Luca, Florian
    FIBONACCI QUARTERLY, 2024, 62 (03): : 193 - 200
  • [26] An Equation Related to k-Generalized Fibonacci Numbers
    Marques, Diego
    Trojovsky, Pavel
    UTILITAS MATHEMATICA, 2016, 101 : 79 - 89
  • [27] On k-generalized Fibonacci numbers with negative indices
    Petho, Attila
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (3-4): : 401 - 418
  • [28] The Binet formula for the k-generalized Fibonacci numbers
    Yang, Sheng-liang
    Zhang, Hui-ting
    ARS COMBINATORIA, 2014, 116 : 193 - 204
  • [29] On some properties of k-generalized Fibonacci numbers
    Ozdemir, Halim
    Karakaya, Sinan
    MATHEMATICAL COMMUNICATIONS, 2024, 29 (02) : 193 - 202
  • [30] Diophantine triples of Fibonacci numbers
    He, Bo
    Luca, Florian
    Togbe, Alain
    ACTA ARITHMETICA, 2016, 175 (01) : 57 - 70