Diophantine Triples and k-Generalized Fibonacci Sequences

被引:0
|
作者
Clemens Fuchs
Christoph Hutle
Florian Luca
László Szalay
机构
[1] University of Salzburg,
[2] University of Witwatersrand,undefined
[3] Centro de Ciencias Matemáticas UNAM,undefined
[4] J. Selye University,undefined
[5] University of West Hungary,undefined
关键词
Diophantine triples; Generalized Fibonacci numbers; Diophantine equations; Application of the Subspace theorem; 11D72; 11B39; 11J87;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} is an integer and (Fn(k))n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big (F_n^{(k)}\big )_{n\ge 0}$$\end{document} is the sequence of k-generalized Fibonacci numbers, then there are only finitely many triples of positive integers 1<a<b<c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<a<b<c$$\end{document} such that ab+1,ac+1,bc+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab+1,~ac+1,~bc+1$$\end{document} are all members of {Fn(k):n≥1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big \{F_n^{(k)}: n\ge 1\big \}$$\end{document}. This generalizes a previous result where the statement for k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document} was proved. The result is ineffective since it is based on Schmidt’s subspace theorem.
引用
收藏
页码:1449 / 1465
页数:16
相关论文
共 50 条
  • [31] A Simplified Binet Formula for k-Generalized Fibonacci Numbers
    Dresden, Gregory P. B.
    Du, Zhaohui
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (04)
  • [32] On the zero-multiplicity of the k-generalized Fibonacci sequence
    Garcia, Jonathan
    Gomez, Carlos A.
    Luca, Florian
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (11-12) : 1564 - 1578
  • [33] The Binet formula and representations of k-generalized Fibonacci numbers
    Lee, GY
    Lee, SG
    Kim, JS
    Shin, HK
    FIBONACCI QUARTERLY, 2001, 39 (02): : 158 - 164
  • [34] ON k-GENERALIZED FIBONACCI NUMBERS WITH ONLY ONE DISTINCT DIGIT
    Marques, Diego
    UTILITAS MATHEMATICA, 2015, 98 : 23 - 31
  • [35] ON b-CONCATENATIONS OF TWO k-GENERALIZED FIBONACCI NUMBERS
    Alan, M.
    Altassan, A.
    ACTA MATHEMATICA HUNGARICA, 2025,
  • [36] k-GENERALIZED FIBONACCI NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Alahmadi, Adel
    Altassan, Alaa
    Luca, Florian
    Shoaib, Hatoon
    GLASNIK MATEMATICKI, 2021, 56 (01) : 29 - 46
  • [37] On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Gomez, Carlos A.
    Luca, Florian
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (04): : 635 - 664
  • [38] On the problem of Pillai with k-generalized Fibonacci numbers and powers of 3
    Ddamulira, Mahadi
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (07) : 1643 - 1666
  • [39] ON THE D(4)-DIOPHANTINE TRIPLES OF FIBONACCI NUMBERS
    Rihane, Salah Eddine
    Hernane, Mohand Ouamar
    Togbe, Alain
    FIBONACCI QUARTERLY, 2018, 56 (01): : 63 - 74
  • [40] GENERALIZED FIBONACCI NUMBER TRIPLES
    SHANNON, AG
    HORADAM, AF
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (02): : 187 - 190