On Y-coordinates of Pell equations which are Fibonacci numbers

被引:0
|
作者
Florian Luca
Faith S. Zottor
机构
[1] University of the Witwatersrand,School of Mathematics
[2] Centro de Ciencias Matemáticas UNAM,undefined
关键词
Diophantine equations; Lucas sequence; Pell equation; 11D61; 11B39; 11D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let d≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 2$$\end{document} be an integer which is not a square. We show that if (Fn)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n)_{n\ge 0}$$\end{document} is the Fibonacci sequence and (Xm,Ym)m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X_m, Y_m)_{m\ge 1}$$\end{document} is the mth solution of the Pell equation X2-dY2=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^2 -dY^2 = \pm 1$$\end{document}, then the equation Ym=Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_m = F_n$$\end{document} has at most two positive integer solutions (m, n) except for d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} when it has three solutions (m,n)=(1,2),(2,3),(3,5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,n)=(1,2),(2,3),(3,5)$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On Y-coordinates of Pell equations which are Fibonacci numbers
    Luca, Florian
    Zottor, Faith S.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (02):
  • [2] On Y-coordinates of Pell equations which are Lucas numbers
    Bilizimbéyé Edjeou
    Bernadette Faye
    Carlos A. Gómez
    Florian Luca
    The Ramanujan Journal, 2022, 59 : 1091 - 1136
  • [3] On Y-coordinates of Pell equations which are Lucas numbers
    Edjeou, Bilizimbeye
    Faye, Bernadette
    Gomez, Carlos A.
    Luca, Florian
    RAMANUJAN JOURNAL, 2022, 59 (04): : 1091 - 1136
  • [4] ON THE x-COORDINATES OF PELL EQUATIONS WHICH ARE FIBONACCI NUMBERS
    Luca, Florian
    Togbe, Alain
    MATHEMATICA SCANDINAVICA, 2018, 122 (01) : 18 - 30
  • [5] On Y-coordinates of Pell equations which are members of a fixed binary recurrence
    Faye, Bernadette
    Luca, Florian
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 184 - 206
  • [6] ON THE x-COORDINATES OF PELL EQUATIONS WHICH ARE FIBONACCI NUMBERS H
    Kafle, Bir
    Luca, Florian
    Togbe, Alain
    COLLOQUIUM MATHEMATICUM, 2017, 149 (01) : 75 - 85
  • [7] ON Y-COORDINATES OF PELL EQUATIONS WHICH ARE BASE 2 REP-DIGITS
    Faye-Fall, Bernadette
    Luca, Florian
    GLASNIK MATEMATICKI, 2020, 55 (01) : 1 - 12
  • [8] On the Euler Function of Y-Coordinates of Pell Equations and Repdigits
    Alahmadi, Adel
    Luca, Florian
    RESULTS IN MATHEMATICS, 2022, 77 (02)
  • [9] On the Euler Function of Y-Coordinates of Pell Equations and Repdigits
    Adel Alahmadi
    Florian Luca
    Results in Mathematics, 2022, 77
  • [10] On the X-coordinates of Pell equations which are products of two Fibonacci numbers
    Kafle, Bir
    Luca, Florian
    Montejano, Amanda
    Szalay, Laszlo
    Togbe, Alain
    JOURNAL OF NUMBER THEORY, 2019, 203 : 310 - 333