Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function

被引:16
|
作者
Peter Richtárik
Martin Takáč
机构
[1] University of Edinburgh,School of Mathematics
来源
Mathematical Programming | 2014年 / 144卷
关键词
Block coordinate descent; Huge-scale optimization; Composite minimization; Iteration complexity; Convex optimization; LASSO; Sparse regression; Gradient descent ; Coordinate relaxation; Gauss–Seidel method; 65K05; 90C05; 90C06; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-accurate solution with probability at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\rho $$\end{document} in at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n/\varepsilon ) \log (1/\rho ))$$\end{document} iterations, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is the number of blocks. This extends recent results of Nesterov (SIAM J Optim 22(2): 341–362, 2012), which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} from the logarithmic term. More importantly, in contrast with the aforementioned work in which the author achieves the results by applying the method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving first true iteration complexity bounds. For strongly convex functions the method converges linearly. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the algorithm is able to solve huge-scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least squares problems with a billion variables.
引用
收藏
页码:1 / 38
页数:37
相关论文
共 50 条
  • [41] Block-coordinate and incremental aggregated proximal gradient methods for nonsmooth nonconvex problems
    Puya Latafat
    Andreas Themelis
    Panagiotis Patrinos
    Mathematical Programming, 2022, 193 : 195 - 224
  • [42] Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs
    Dlask, Tomas
    Werner, Tomas
    CONSTRAINTS, 2023, 28 (02) : 244 - 276
  • [43] Activity propagation in systems of linear inequalities and its relation to block-coordinate descent in linear programs
    Tomáš Dlask
    Tomáš Werner
    Constraints, 2023, 28 : 244 - 276
  • [44] On adaptive block coordinate descent methods for ridge regression
    Wei, Wei
    Shi, Tao
    Nie, Song
    Chen, Xiaoping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (07):
  • [45] On adaptive block coordinate descent methods for ridge regression
    Wei Wei
    Tao Shi
    Song Nie
    Xiaoping Chen
    Computational and Applied Mathematics, 2023, 42
  • [46] Accelerating block coordinate descent methods with identification strategies
    R. Lopes
    S. A. Santos
    P. J. S. Silva
    Computational Optimization and Applications, 2019, 72 : 609 - 640
  • [47] Accelerating block coordinate descent methods with identification strategies
    Lopes, R.
    Santos, S. A.
    Silva, P. J. S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (03) : 609 - 640
  • [48] Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
    Tran-Dinh, Quoc
    Luo, Yang
    MATHEMATICS OF OPERATIONS RESEARCH, 2025,
  • [49] Block-coordinate and incremental aggregated proximal gradient methods for nonsmooth nonconvex problems
    Latafat, Puya
    Themelis, Andreas
    Patrinos, Panagiotis
    MATHEMATICAL PROGRAMMING, 2022, 193 (01) : 195 - 224
  • [50] Convergence of an asynchronous block-coordinate forward-backward algorithm for convex composite optimization
    Traore, Cheik
    Salzo, Saverio
    Villa, Silvia
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (01) : 303 - 344