Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function

被引:16
|
作者
Peter Richtárik
Martin Takáč
机构
[1] University of Edinburgh,School of Mathematics
来源
Mathematical Programming | 2014年 / 144卷
关键词
Block coordinate descent; Huge-scale optimization; Composite minimization; Iteration complexity; Convex optimization; LASSO; Sparse regression; Gradient descent ; Coordinate relaxation; Gauss–Seidel method; 65K05; 90C05; 90C06; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-accurate solution with probability at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\rho $$\end{document} in at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n/\varepsilon ) \log (1/\rho ))$$\end{document} iterations, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is the number of blocks. This extends recent results of Nesterov (SIAM J Optim 22(2): 341–362, 2012), which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} from the logarithmic term. More importantly, in contrast with the aforementioned work in which the author achieves the results by applying the method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving first true iteration complexity bounds. For strongly convex functions the method converges linearly. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the algorithm is able to solve huge-scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least squares problems with a billion variables.
引用
收藏
页码:1 / 38
页数:37
相关论文
共 50 条
  • [31] Randomized block-coordinate adaptive algorithms for nonconvex optimization problems
    Zhou, Yangfan
    Huang, Kaizhu
    Li, Jiang
    Cheng, Cheng
    Wang, Xuguang
    Hussian, Amir
    Liu, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [32] Random block-coordinate methods for inconsistent convex optimisation problems
    Staudigl, Mathias
    Jacquot, Paulin
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2023, 2023 (01):
  • [33] Distributed Block Coordinate Descent for Minimizing Partially Separable Functions
    Marecek, Jakub
    Richtarik, Peter
    Takac, Martin
    NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 : 261 - 288
  • [34] Taxonomy of Dual Block-Coordinate Ascent Methods for Discrete Energy Minimization
    Tourani, Siddharth
    Shekhovtsov, Alexander
    Rother, Carsten
    Savchynskyy, Bogdan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [35] A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation
    Treister, Eran
    Turek, Javier
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [36] ON THE CONVERGENCE OF BLOCK COORDINATE DESCENT TYPE METHODS
    Beck, Amir
    Tetruashvili, Luba
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2037 - 2060
  • [37] Suboptimal distributed MPC based on a block-coordinate descent method with feasibility and stability guarantees
    Necoara, Ion
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4480 - 4485
  • [38] Iteration Complexity of Feasible Descent Methods for Convex Optimization
    Wang, Po-Wei
    Lin, Chih-Jen
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 1523 - 1548
  • [39] Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions
    Ene, Alina
    Nguyen, Huy L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 787 - 795
  • [40] Block-Coordinate Methods and Restarting for Solving Extensive-Form Games
    Chakrabarti, Darshan
    Diakonikolas, Jelena
    Kroer, Christian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,