Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function

被引:16
|
作者
Peter Richtárik
Martin Takáč
机构
[1] University of Edinburgh,School of Mathematics
来源
Mathematical Programming | 2014年 / 144卷
关键词
Block coordinate descent; Huge-scale optimization; Composite minimization; Iteration complexity; Convex optimization; LASSO; Sparse regression; Gradient descent ; Coordinate relaxation; Gauss–Seidel method; 65K05; 90C05; 90C06; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-accurate solution with probability at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\rho $$\end{document} in at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n/\varepsilon ) \log (1/\rho ))$$\end{document} iterations, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is the number of blocks. This extends recent results of Nesterov (SIAM J Optim 22(2): 341–362, 2012), which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} from the logarithmic term. More importantly, in contrast with the aforementioned work in which the author achieves the results by applying the method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving first true iteration complexity bounds. For strongly convex functions the method converges linearly. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the algorithm is able to solve huge-scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least squares problems with a billion variables.
引用
收藏
页码:1 / 38
页数:37
相关论文
共 50 条
  • [21] Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization
    Lee, Ching-pei
    Wright, Stephen J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 185 (01) : 151 - 187
  • [22] Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization
    Ching-pei Lee
    Stephen J. Wright
    Journal of Optimization Theory and Applications, 2020, 185 : 151 - 187
  • [23] Incremental Nonnegative Tucker Decomposition with Block-Coordinate Descent and Recursive Approaches
    Zdunek, Rafal
    Fonal, Krzysztof
    SYMMETRY-BASEL, 2022, 14 (01):
  • [24] Smoothing randomized block-coordinate proximal gradient algorithms for nonsmooth nonconvex composite optimization
    Li, Xue
    Bian, Wei
    NUMERICAL ALGORITHMS, 2024,
  • [25] Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization
    P. Tseng
    S. Yun
    Journal of Optimization Theory and Applications, 2009, 140
  • [26] Parsimonious Identification of Continuous-Time Systems: A Block-Coordinate Descent Approach
    Gonzalez, Rodrigo A.
    Rojas, Cristian R.
    Pan, Siqi
    Welsh, James S.
    IFAC PAPERSONLINE, 2023, 56 (02): : 4216 - 4221
  • [27] Alternating Randomized Block Coordinate Descent
    Diakonikolas, Jelena
    Orecchia, Lorenzo
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [28] Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization
    Tseng, P.
    Yun, S.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 140 (03) : 513 - 535
  • [29] A Randomized Block-Coordinate Adam online learning optimization algorithm
    Zhou, Yangfan
    Zhang, Mingchuan
    Zhu, Junlong
    Zheng, Ruijuan
    Wu, Qingtao
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16): : 12671 - 12684
  • [30] A Randomized Block-Coordinate Adam online learning optimization algorithm
    Yangfan Zhou
    Mingchuan Zhang
    Junlong Zhu
    Ruijuan Zheng
    Qingtao Wu
    Neural Computing and Applications, 2020, 32 : 12671 - 12684