Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function

被引:16
|
作者
Peter Richtárik
Martin Takáč
机构
[1] University of Edinburgh,School of Mathematics
来源
Mathematical Programming | 2014年 / 144卷
关键词
Block coordinate descent; Huge-scale optimization; Composite minimization; Iteration complexity; Convex optimization; LASSO; Sparse regression; Gradient descent ; Coordinate relaxation; Gauss–Seidel method; 65K05; 90C05; 90C06; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we develop a randomized block-coordinate descent method for minimizing the sum of a smooth and a simple nonsmooth block-separable convex function and prove that it obtains an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-accurate solution with probability at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\rho $$\end{document} in at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n/\varepsilon ) \log (1/\rho ))$$\end{document} iterations, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} is the number of blocks. This extends recent results of Nesterov (SIAM J Optim 22(2): 341–362, 2012), which cover the smooth case, to composite minimization, while at the same time improving the complexity by the factor of 4 and removing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} from the logarithmic term. More importantly, in contrast with the aforementioned work in which the author achieves the results by applying the method to a regularized version of the objective function with an unknown scaling factor, we show that this is not necessary, thus achieving first true iteration complexity bounds. For strongly convex functions the method converges linearly. In the smooth case we also allow for arbitrary probability vectors and non-Euclidean norms. Finally, we demonstrate numerically that the algorithm is able to solve huge-scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}-regularized least squares problems with a billion variables.
引用
收藏
页码:1 / 38
页数:37
相关论文
共 50 条
  • [1] Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
    Richtarik, Peter
    Takac, Martin
    MATHEMATICAL PROGRAMMING, 2014, 144 (1-2) : 1 - 38
  • [2] On the complexity analysis of randomized block-coordinate descent methods
    Zhaosong Lu
    Lin Xiao
    Mathematical Programming, 2015, 152 : 615 - 642
  • [3] On the complexity analysis of randomized block-coordinate descent methods
    Lu, Zhaosong
    Xiao, Lin
    MATHEMATICAL PROGRAMMING, 2015, 152 (1-2) : 615 - 642
  • [4] Iteration complexity analysis of block coordinate descent methods
    Mingyi Hong
    Xiangfeng Wang
    Meisam Razaviyayn
    Zhi-Quan Luo
    Mathematical Programming, 2017, 163 : 85 - 114
  • [5] Iteration complexity analysis of block coordinate descent methods
    Hong, Mingyi
    Wang, Xiangfeng
    Razaviyayn, Meisam
    Luo, Zhi-Quan
    MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 85 - 114
  • [6] Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate Descent
    Petra, Stefania
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (03): : 129 - 149
  • [7] Asynchronous Incremental Block-Coordinate Descent
    Aytekin, Arda
    Feyzmahdavian, Hamid Reza
    Johansson, Mikael
    2014 52ND ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2014, : 19 - 24
  • [9] Relative Interior Rule in Block-Coordinate Descent
    Werner, Tomas
    Prusa, Daniel
    Dlask, Tomas
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 7556 - 7564
  • [10] ITERATION COMPLEXITY OF A BLOCK COORDINATE GRADIENT DESCENT METHOD FOR CONVEX OPTIMIZATION
    Hua, Xiaoqin
    Yamashita, Nobuo
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (03) : 1298 - 1313