Several identities in the Catalan triangle

被引:0
|
作者
Zhizheng Zhang
Bijun Pang
机构
[1] Luoyang Teachers’ College,Department of Mathematics
关键词
Catalan triangle; Catalan number; sum; Fibonacci matrix; Fibonacci number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by Bn, p = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {n}\left( {_{n - p}^{2n} } \right) $$\end{document}. Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving Bn, p and the Fibonacci numbers Fn are given. As special cases, some new relationships between the well-known Catalan numbers Cn and the Fibonacci numbers are obtained, for example: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}} {{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } , $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \frac{{n - 1}} {{n + 2}}C_n = \frac{1} {2}F_n + F_{n - 2} \hfill \\ + \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}} {{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}} {{k + 2}}C_k F_{n - k + 1} } . \hfill \\ \end{gathered} $$\end{document}
引用
收藏
页码:363 / 378
页数:15
相关论文
共 50 条
  • [41] Identities involving Narayana polynomials and Catalan numbers
    Mansour, Toufik
    Sun, Yidong
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4079 - 4088
  • [42] Some new binomial sums related to the Catalan triangle
    Sun, Yidong
    Ma, Fei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [43] Three Identities of the Catalan-Qi Numbers
    Mahmoud, Mansour
    Qi, Feng
    MATHEMATICS, 2016, 4 (02)
  • [44] Identities in conflict. A Catalan vision of Israel
    Figuera Raichs, Anna
    TRIPODOS, 2010, (26): : 176 - 178
  • [45] Territorial dynamics and geographical identities in Catalan nationalism
    Fernandes, Joao Luis J.
    CADERNOS DE GEOGRAFIA, 2018, (38): : 105 - 107
  • [46] Some identities on the Catalan, Motzkin and Schroder numbers
    Deng, Eva Y. P.
    Yan, Wei-Jun
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) : 2781 - 2789
  • [47] Harmonic numbers, Catalan's triangle and mesh patterns
    Kitaev, Sergey
    Liese, Jeffrey
    DISCRETE MATHEMATICS, 2013, 313 (14) : 1515 - 1531
  • [48] Several identities and relations related to q-analogues of Pochhammer k-symbol with applications to Fuss–Catalan–Qi numbers
    Mongia Khlifi
    Wathek Chammam
    Bai-Ni Guo
    Afrika Matematika, 2024, 35
  • [49] The geometry of some Fibonacci identities in the Hosoya triangle
    Florez, Rigoberto
    Higuita, Robinson A.
    Mukherjee, Antara
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (02): : 183 - 200
  • [50] Ballot matrix as Catalan matrix power and related identities
    Stanimirovic, Stefan
    Stanimirovic, Predrag
    Ilic, Aleksandar
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (03) : 344 - 351