Some identities on the Catalan, Motzkin and Schroder numbers

被引:11
|
作者
Deng, Eva Y. P. [1 ]
Yan, Wei-Jun [2 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Neusoft Inst Informat, Dept Fdn Courses, Dalian 116023, Peoples R China
关键词
Catalan number; Motzkin number; Schroder number; Riordan group;
D O I
10.1016/j.dam.2007.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some identities between the Catalan, Motzkin and Schroder numbers are obtained by using the Riordan group. We also present two combinatorial proofs for an identity related to the Catalan numbers with the Motzkin numbers and an identity related to the Schroder numbers with the Motzkin numbers, respectively. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2781 / 2789
页数:9
相关论文
共 50 条
  • [1] Identities involving weighted Catalan, Schroder and Motzkin paths
    Chen, Zhi
    Pan, Hao
    ADVANCES IN APPLIED MATHEMATICS, 2017, 86 : 81 - 98
  • [2] On the Catalan Numbers and Some of Their Identities
    Zhang, Wenpeng
    Chen, Li
    SYMMETRY-BASEL, 2019, 11 (01):
  • [3] SOME NEW SEQUENCES GENERALIZING THE CATALAN AND MOTZKIN NUMBERS
    STEIN, PR
    WATERMAN, MS
    DISCRETE MATHEMATICS, 1979, 26 (03) : 261 - 272
  • [4] Catalan, Motzkin, and Riordan numbers
    Bernhart, FR
    DISCRETE MATHEMATICS, 1999, 204 (1-3) : 73 - 112
  • [5] Some Convolution Identities for Catalan Numbers
    Rakhimov, I
    Atan, Mohd K. A.
    Hadi, N. A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (04): : 771 - 782
  • [6] Taylor expansions for Catalan and Motzkin numbers
    Eu, SP
    Liu, SC
    Yeh, YN
    ADVANCES IN APPLIED MATHEMATICS, 2002, 29 (03) : 345 - 357
  • [7] Notes on the q-colored Motzkin numbers and Schroder numbers
    Chen, Zhi
    Pan, Hao
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (06) : 1133 - 1141
  • [8] Some identities involving the classical Catalan Numbers
    Fan, Panhong
    RESEARCH ON NUMBER THEORY AND SMARANDACHE NOTIONS, 2010, : 128 - 131
  • [9] GENERATING TREES AND THE CATALAN AND SCHRODER NUMBERS
    WEST, J
    DISCRETE MATHEMATICS, 1995, 146 (1-3) : 247 - 262
  • [10] Catalan and Motzkin numbers modulo 4 and 8
    Eu, Sen-Peng
    Liu, Shu-Chung
    Yeh, Yeong-Nan
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (06) : 1449 - 1466