Some identities on the Catalan, Motzkin and Schroder numbers

被引:11
|
作者
Deng, Eva Y. P. [1 ]
Yan, Wei-Jun [2 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Neusoft Inst Informat, Dept Fdn Courses, Dalian 116023, Peoples R China
关键词
Catalan number; Motzkin number; Schroder number; Riordan group;
D O I
10.1016/j.dam.2007.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some identities between the Catalan, Motzkin and Schroder numbers are obtained by using the Riordan group. We also present two combinatorial proofs for an identity related to the Catalan numbers with the Motzkin numbers and an identity related to the Schroder numbers with the Motzkin numbers, respectively. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2781 / 2789
页数:9
相关论文
共 50 条
  • [21] Some matrix identities on colored Motzkin paths
    Yang, Sheng-Liang
    Dong, Yan-Ni
    He, Tian-Xiao
    DISCRETE MATHEMATICS, 2017, 340 (12) : 3081 - 3091
  • [22] Some new identities and inequalities for Bernoulli polynomials and numbers of higher order related to the Stirling and Catalan numbers
    Gun, Damla
    Simsek, Yilmaz
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [23] Some new identities and inequalities for Bernoulli polynomials and numbers of higher order related to the Stirling and Catalan numbers
    Damla Gun
    Yilmaz Simsek
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [24] Identities involving Narayana polynomials and Catalan numbers
    Mansour, Toufik
    Sun, Yidong
    DISCRETE MATHEMATICS, 2009, 309 (12) : 4079 - 4088
  • [25] Several series identities involving the Catalan numbers
    Yin, Li
    Qi, Feng
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2018, 172 (03) : 466 - 474
  • [26] Three Identities of the Catalan-Qi Numbers
    Mahmoud, Mansour
    Qi, Feng
    MATHEMATICS, 2016, 4 (02)
  • [27] On divisibility properties of some differences of Motzkin numbers
    Lengyel, Tamas
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 121 - 136
  • [28] Crossings and nestings over some Motzkin objects and q-Motzkin numbers
    Andriantsoa, Sandrataniaina R.
    Rakotomamonjy, Paul M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03): : 1 - 20
  • [29] 关于Motzkin-Schroder数列
    乐茂华
    陈锡庚
    应用数学, 1996, (02)
  • [30] Order properties of the Motzkin and Schroder families
    Bernini, Antonio
    Ferrari, Luca
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2007, 39 : 259 - 272