In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by Bn, p = \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\tfrac{p}
{n}\left( {_{n - p}^{2n} } \right)
$$\end{document}. Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving Bn, p and the Fibonacci numbers Fn are given. As special cases, some new relationships between the well-known Catalan numbers Cn and the Fibonacci numbers are obtained, for example: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}}
{{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } ,
$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\begin{gathered}
\frac{{n - 1}}
{{n + 2}}C_n = \frac{1}
{2}F_n + F_{n - 2} \hfill \\
+ \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}}
{{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}}
{{k + 2}}C_k F_{n - k + 1} } . \hfill \\
\end{gathered}
$$\end{document}