Several identities in the Catalan triangle

被引:0
|
作者
Zhizheng Zhang
Bijun Pang
机构
[1] Luoyang Teachers’ College,Department of Mathematics
关键词
Catalan triangle; Catalan number; sum; Fibonacci matrix; Fibonacci number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by Bn, p = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {n}\left( {_{n - p}^{2n} } \right) $$\end{document}. Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving Bn, p and the Fibonacci numbers Fn are given. As special cases, some new relationships between the well-known Catalan numbers Cn and the Fibonacci numbers are obtained, for example: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}} {{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } , $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \frac{{n - 1}} {{n + 2}}C_n = \frac{1} {2}F_n + F_{n - 2} \hfill \\ + \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}} {{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}} {{k + 2}}C_k F_{n - k + 1} } . \hfill \\ \end{gathered} $$\end{document}
引用
收藏
页码:363 / 378
页数:15
相关论文
共 50 条
  • [21] A PAIR OF ELEMENTARY TRIANGLE IDENTITIES
    SMITH, EA
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (05): : 548 - &
  • [22] Contemporary cultural identities: the Catalan case
    Portales, Enric
    CULTURA LENGUAJE Y REPRESENTACION-REVISTA DE ESTUDIOS CULTURALES DE LA UNIVERSITAT JAUME I, 2023, 30 : 309 - 312
  • [23] Contemporary cultural identities: the Catalan case
    Verges, Montserrat Palau
    CAPLLETRA, 2023, (74): : 343 - 348
  • [24] Catalan Identities for Generalized Fibonacci Polynomials
    Noguera, Maribel Diaz
    Florez, Rigoberto
    Ramirez, Jose L.
    Rojas, Martha Romero
    FIBONACCI QUARTERLY, 2024, 62 (02): : 100 - 111
  • [25] Catalan Festival Culture, Identities, and Independentism
    Kammerer, Nina
    QUADERNS-E DE L INSTITUT CATALA D ANTROPOLOGIA, 2014, 19 (02): : 58 - 77
  • [26] Some Convolution Identities for Catalan Numbers
    Rakhimov, I
    Atan, Mohd K. A.
    Hadi, N. A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (04): : 771 - 782
  • [27] Catalan matrix and related combinatorial identities
    Stanimirovic, Stefan
    Stanimirovic, Predrag
    Miladinovic, Marko
    Ilic, Aleksandar
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 796 - 805
  • [28] Some New Identities for Catalan Polynomials
    Clapperton, James A.
    Larcombe, Peter J.
    Fennessey, Eric J.
    UTILITAS MATHEMATICA, 2009, 80 : 3 - 10
  • [29] TRIPLE PRODUCT SUMS OF CATALAN TRIANGLE NUMBERS
    Chu, Wenchang
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2020, 15 (02) : 1 - 17
  • [30] Contemporary cultural identities: the Catalan case
    Colom-Montero, Guillem
    BULLETIN OF SPANISH STUDIES, 2024, 100 (06) : 935 - 936