Anisotropic (p, q)-Equations with Asymmetric Reaction Term

被引:0
|
作者
Zhenhai Liu
Nikolaos S. Papageorgiou
机构
[1] Yulin Normal University,Center for Applied Mathematics of Guangxi
[2] Guangxi Minzu University,Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, College of Mathematics and Physics
[3] National Technical University,Department of Mathematics
来源
关键词
Anisotropic ; -Laplacian; regularity; maximum principle; critical groups; constant and nodal solutions; 35J20; 35J60; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Dirichlet problem driven by the anisotropic (p, q)-Laplacian (double phase problem) and with a reaction term which exhibits asymmetric behavior as x→±∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow \pm \infty $$\end{document}. Using variational tools, truncation, and comparison techniques and critical groups, we prove a multiplicity theorem producing four nontrivial solutions all with sign information and ordered.
引用
收藏
相关论文
共 50 条
  • [41] Convergence of Radially Symmetric Solutions for (p, q)-Laplacian Elliptic Equations with a Damping Term
    Jitsuro Sugie
    Masatoshi Minei
    Journal of Dynamics and Differential Equations, 2018, 30 : 579 - 600
  • [42] Convergence of Radially Symmetric Solutions for (p, q)-Laplacian Elliptic Equations with a Damping Term
    Sugie, Jitsuro
    Minei, Masatoshi
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 579 - 600
  • [43] Positive solutions for (p, 2)-equations with superlinear reaction and a concave boundary term
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (04) : 1 - 19
  • [44] Nonautonomous ( p, q )-equations with convection
    Jing, Zhao
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    Yao, Jen-Chih
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 197
  • [45] DIRICHLET (p, q)-EQUATIONS AT RESONANCE
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) : 2037 - 2060
  • [46] Singular Neumann (p, q)-equations
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Positivity, 2020, 24 : 1017 - 1040
  • [47] Singular Dirichlet (p, q)-Equations
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [48] Singular Dirichlet (p, q)-Equations
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Mediterranean Journal of Mathematics, 2021, 18
  • [49] Singular Neumann (p, q)-equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    POSITIVITY, 2020, 24 (04) : 1017 - 1040
  • [50] Anisotropic andp, q-nonlinear partial differential equations
    Marcellini, Paolo
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2020, 31 (02) : 295 - 301