Anisotropic (p, q)-Equations with Asymmetric Reaction Term

被引:0
|
作者
Zhenhai Liu
Nikolaos S. Papageorgiou
机构
[1] Yulin Normal University,Center for Applied Mathematics of Guangxi
[2] Guangxi Minzu University,Guangxi Key Laboratory of Universities Optimization Control and Engineering Calculation, College of Mathematics and Physics
[3] National Technical University,Department of Mathematics
来源
关键词
Anisotropic ; -Laplacian; regularity; maximum principle; critical groups; constant and nodal solutions; 35J20; 35J60; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Dirichlet problem driven by the anisotropic (p, q)-Laplacian (double phase problem) and with a reaction term which exhibits asymmetric behavior as x→±∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow \pm \infty $$\end{document}. Using variational tools, truncation, and comparison techniques and critical groups, we prove a multiplicity theorem producing four nontrivial solutions all with sign information and ordered.
引用
收藏
相关论文
共 50 条
  • [31] ON NONCOERCIVE(p,q)-EQUATIONS
    Nikolaos S.PAPAGEORGIOU
    Calogero VETRO
    Francesca VETRO
    ActaMathematicaScientia, 2021, 41 (05) : 1788 - 1808
  • [32] On Noncoercive (p, q)-Equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1788 - 1808
  • [33] On Noncoercive (p, q)-Equations
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Acta Mathematica Scientia, 2021, 41 : 1788 - 1808
  • [34] STABILITY OF THE ANISOTROPIC MAXWELL EQUATIONS WITH A CONDUCTIVITY TERM
    Eller, Matthias
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2019, 8 (02): : 343 - 357
  • [35] MONOTONE WAVE FRONTS FOR (p, q)-LAPLACIAN DRIVEN REACTION-DIFFUSION EQUATIONS
    Garrione, Maurizio
    Strani, Marta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (01): : 91 - 103
  • [36] Parametric Anisotropic(p,q)-Neumann Problems
    Zhen-hai LIU
    Nikolaos S.PAPAGEORGIOU
    Acta Mathematicae Applicatae Sinica, 2023, 39 (04) : 926 - 942
  • [37] Parametric Anisotropic (p, q)-Neumann Problems
    Zhen-hai Liu
    Nikolaos S. Papageorgiou
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 926 - 942
  • [38] A POSITIVE SOLUTION FOR AN ANISOTROPIC (p, q)-LAPLACIAN
    Razani, Abdolrahman
    Figueiredo, Giovany M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1629 - 1643
  • [39] Parametric Anisotropic (p, q)-Neumann Problems
    Liu, Zhen-hai
    Papageorgiou, Nikolaos S.
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 926 - 942
  • [40] AN ANISOTROPIC INFINITY LAPLACIAN OBTAINED AS THE LIMIT OF THE ANISOTROPIC (p, q)-LAPLACIAN
    Perez-Llanos, Mayte
    Rossi, Julio D.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (06) : 1057 - 1076