Nonautonomous ( p, q )-equations with convection

被引:0
|
作者
Jing, Zhao [1 ,2 ]
Liu, Zhenhai [1 ]
Papageorgiou, Nikolaos S. [3 ,4 ]
Yao, Jen-Chih [5 ,6 ]
机构
[1] Guangxi Minzu Univ, Key Lab Optimizat Control & Engn Calculat, Guangxi Coll & Univ, Ctr Appl Math Guangxi, Nanning 530006, Guangxi, Peoples R China
[2] Guangxi Univ Finance & Econ, Sch Math & Quantitat Econ, Nanning 530003, Guangxi, Peoples R China
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
[5] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[6] Acad Romanian Scientists, Bucharest 50044, Romania
来源
关键词
Nonautonomous differential operator; Frozen variable; Minimal solution map; Leray-Schauder alternative principle; Pseudomonotone map; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; NEUMANN PROBLEMS; EXISTENCE; SIGN; DEPENDENCE; UNIQUENESS;
D O I
10.1016/j.bulsci.2024.103521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Dirichlet problem driven by a nonautonomous (p, q)-differential operator and a reaction which is gradient dependent and in general sign-changing. Using a topological approach eventually based on the Leray-Schauder alternative principle, we prove the existence of a positive smooth solution. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Nonautonomous (p, q)-equations with unbalanced growth and competing nonlinearities
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 182 : 164 - 194
  • [2] Positive Solutions for Resonant (p,q)-equations with convection
    Liu, Zhenhai
    Papageorgiou, Nikolaos S.
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 217 - 232
  • [3] Degenerated (p, q)-Laplacian With Weights and Related Equations With Convection
    Motreanu, D.
    Nashed, M. Z.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (15) : 1757 - 1767
  • [4] Existence, Uniqueness and Asymptotic Behavior of Parametric Anisotropic (p, q)-Equations with Convection
    Francesca Vetro
    Patrick Winkert
    Applied Mathematics & Optimization, 2022, 86
  • [5] Positive solutions for (p, q)-equations with convection and a sign-changing reaction
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 40 - 57
  • [6] Existence, Uniqueness and Asymptotic Behavior of Parametric Anisotropic (p, q)-Equations with Convection
    Vetro, Francesca
    Winkert, Patrick
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (02):
  • [7] ON NONCOERCIVE(p,q)-EQUATIONS
    Nikolaos S.PAPAGEORGIOU
    Calogero VETRO
    Francesca VETRO
    ActaMathematicaScientia, 2021, 41 (05) : 1788 - 1808
  • [8] On Noncoercive (p, q)-Equations
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1788 - 1808
  • [9] On Noncoercive (p, q)-Equations
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Acta Mathematica Scientia, 2021, 41 : 1788 - 1808
  • [10] A parametric singular (p,q)-equation with convection
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Zeng, Shengda
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (11) : 1940 - 1952