Nonautonomous ( p, q )-equations with convection

被引:0
|
作者
Jing, Zhao [1 ,2 ]
Liu, Zhenhai [1 ]
Papageorgiou, Nikolaos S. [3 ,4 ]
Yao, Jen-Chih [5 ,6 ]
机构
[1] Guangxi Minzu Univ, Key Lab Optimizat Control & Engn Calculat, Guangxi Coll & Univ, Ctr Appl Math Guangxi, Nanning 530006, Guangxi, Peoples R China
[2] Guangxi Univ Finance & Econ, Sch Math & Quantitat Econ, Nanning 530003, Guangxi, Peoples R China
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
[5] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[6] Acad Romanian Scientists, Bucharest 50044, Romania
来源
关键词
Nonautonomous differential operator; Frozen variable; Minimal solution map; Leray-Schauder alternative principle; Pseudomonotone map; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; NEUMANN PROBLEMS; EXISTENCE; SIGN; DEPENDENCE; UNIQUENESS;
D O I
10.1016/j.bulsci.2024.103521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Dirichlet problem driven by a nonautonomous (p, q)-differential operator and a reaction which is gradient dependent and in general sign-changing. Using a topological approach eventually based on the Leray-Schauder alternative principle, we prove the existence of a positive smooth solution. (c) 2024 Elsevier Masson SAS. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] On the behaviour of nonautonomous difference equations
    Memarbashi, Reza
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (09) : 1031 - 1035
  • [22] Reversibility of Conjugacies for Nonautonomous Equations
    Barreira, Luis
    Valls, Claudia
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) : 303 - 310
  • [23] On nonautonomous functional differential equations
    Lan, NT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (01) : 158 - 174
  • [24] Attractors of nonautonomous Schrodinger equations
    Liu, YR
    Liu, ZR
    Zheng, YA
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (02) : 180 - 189
  • [25] On a system of (p, q)-analogues of the natural transform for solving (p, q)-differential equations
    Jirakulchaiwong, Sansumpan
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sortiris K.
    Al-Omari, Shrideh
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 29 (04): : 369 - 386
  • [26] Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-Laplacian
    Pasca, Daniel
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (05) : 841 - 850
  • [27] LIMITING EQUATIONS OF NONAUTONOMOUS ORDINARY DIFFERENTIAL-EQUATIONS
    ARTSTEIN, Z
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (02) : 184 - 202
  • [28] ANISOTROPIC(p,q)-EQUATIONS WITH COMPETITION PHENOMENA
    刘振海
    Nikolaos S.PAPAGEORGIOU
    Acta Mathematica Scientia, 2022, 42 (01) : 299 - 322
  • [29] Impulsive quantum (p,q)-difference equations
    Nuntigrangjana, Thana
    Putjuso, Sasitorn
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [30] Superlinear (p(z), q(z))-equations
    Papageorgiou, N. S.
    Vetro, C.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (01) : 8 - 25