Local maximum points of explicitly quasiconvex functions

被引:0
|
作者
Ovidiu Bagdasar
Nicolae Popovici
机构
[1] University of Derby,School of Computing and Mathematics
[2] Babeş-Bolyai University of Cluj-Napoca,Faculty of Mathematics and Computer Science
来源
Optimization Letters | 2015年 / 9卷
关键词
Local maximum point; Relative algebraic interior; Convex function; Explicitly quasiconvex function; Strictly convex space; Least squares problem;
D O I
暂无
中图分类号
学科分类号
摘要
This work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions.
引用
收藏
页码:769 / 777
页数:8
相关论文
共 50 条