On Quasiconvex Functions Which are Convexifiable or Not

被引:0
|
作者
Jean-Pierre Crouzeix
机构
[1] LIMOS,
[2] Université Clermont Auvergne,undefined
关键词
Convexifiability; Least concavity; Preorder; Utility functions; Afriat’s and sandwich approximations; Revealed preferences; 91B42; 26B25;
D O I
暂无
中图分类号
学科分类号
摘要
A quasiconvex function f being given, does there exist an increasing and continuous function k which makes k∘f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\circ f$$\end{document} convex? How to build such a k? Some words on least convex (concave) functions. The ratio of two positive numbers is neither locally convexifiable nor locally concavifiable. Finally, some considerations on the approximation of a preorder from a finite number of observations and on the revealed preference problem are discussed.
引用
收藏
页码:66 / 80
页数:14
相关论文
共 50 条