Quasiconvex functions and Hessian equations

被引:14
|
作者
Faraco, D [1 ]
Zhong, X
机构
[1] Univ Jyvaskyla, Dept Math & Stat, SF-40351 Jyvaskyla, Finland
[2] Max Planck Inst, Leipzig, Germany
[3] Wuhan Inst Phys & Math, Wuhan, Peoples R China
[4] Chinese Acad Sci, Beijing 100864, Peoples R China
关键词
Symmetric Function; Symmetric Matrice; Elementary Symmetric Function; Quasiconvex Function; Hessian Equation;
D O I
10.1007/s00205-003-0255-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we construct new examples of quasiconvex functions defined on the set S-nxn of symmetric matrices. They are built on the k-th elementary symmetric function of the eigenvalues, k = 1,2,...,n. Our motivation came from a paper by Sverak [S]. The proof of our result relies on the theory of the so-called k-Hessian equations, which have been intensively studied recently; see [CNS,T1,TW1,TW2].
引用
收藏
页码:245 / 252
页数:8
相关论文
共 50 条
  • [1] Quasiconvex Functions and Hessian Equations
    Daniel Faraco
    Xiao Zhong
    Archive for Rational Mechanics and Analysis, 2003, 168 : 245 - 252
  • [2] On the Hessian matrix and Minkowski addition of quasiconvex functions
    Longinetti, Marco
    Salani, Paolo
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (03): : 276 - 292
  • [3] Hessian equations with elementary symmetric functions
    Dong, HJ
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (07) : 1005 - 1025
  • [4] Approximation of quasiconvex functions by neatly quasiconvex functions
    Suliman Al-Homidan
    Loai Shaalan
    Optimization Letters, 2021, 15 : 979 - 989
  • [5] Approximation of quasiconvex functions by neatly quasiconvex functions
    Al-Homidan, Suliman
    Shaalan, Loai
    OPTIMIZATION LETTERS, 2021, 15 (03) : 979 - 989
  • [6] ON ω-QUASICONVEX FUNCTIONS
    Tabor, Jacek
    Tabor, Jozef
    Zoldak, Marek
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 845 - 857
  • [7] Quasiconvex functions can be approximated by quasiconvex polynomials
    Heinz, Sebastian
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (04) : 795 - 801
  • [8] Semicontinuity and quasiconvex functions
    Mukherjee, RN
    Reddy, LV
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (03) : 715 - 726
  • [9] Semicontinuity and quasiconvex functions
    Department of Applied Mathematics, Institute of Technology, Banaras Hindu Univ., Varanasi, India, India
    J. Optim. Theory Appl., 3 (715-726):
  • [10] A CHARACTERIZATION OF QUASICONVEX FUNCTIONS
    TEMAM, R
    APPLIED MATHEMATICS AND OPTIMIZATION, 1982, 8 (03): : 287 - 291