Quasiconvex functions and Hessian equations

被引:14
|
作者
Faraco, D [1 ]
Zhong, X
机构
[1] Univ Jyvaskyla, Dept Math & Stat, SF-40351 Jyvaskyla, Finland
[2] Max Planck Inst, Leipzig, Germany
[3] Wuhan Inst Phys & Math, Wuhan, Peoples R China
[4] Chinese Acad Sci, Beijing 100864, Peoples R China
关键词
Symmetric Function; Symmetric Matrice; Elementary Symmetric Function; Quasiconvex Function; Hessian Equation;
D O I
10.1007/s00205-003-0255-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we construct new examples of quasiconvex functions defined on the set S-nxn of symmetric matrices. They are built on the k-th elementary symmetric function of the eigenvalues, k = 1,2,...,n. Our motivation came from a paper by Sverak [S]. The proof of our result relies on the theory of the so-called k-Hessian equations, which have been intensively studied recently; see [CNS,T1,TW1,TW2].
引用
收藏
页码:245 / 252
页数:8
相关论文
共 50 条
  • [31] Fourier transformation of quasiconvex functions and functions of the class V *
    Trigub R.M.
    Journal of Mathematical Sciences, 2015, 204 (3) : 369 - 378
  • [32] ON SYMMETRIZATION AND HESSIAN EQUATIONS
    TSO, K
    JOURNAL D ANALYSE MATHEMATIQUE, 1989, 52 : 94 - 106
  • [33] Convex and quasiconvex functions on trees and their applications
    Bapat, R. B.
    Kalita, D.
    Nath, M.
    Sarma, D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 533 : 210 - 234
  • [34] A characterization of the degenerate complex Hessian equations for functions with bounded (p, m)-energy
    Ahag, Per
    Czyz, Rafal
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (03) : 1853 - 1873
  • [35] Stability of Serrin-Type Problem for Hessian Equations and Hessian Quotient Equations
    Sun, Yifan
    Ma, Feiyao
    Wo, Weifeng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (01)
  • [36] Quasiconvex duality for the max of two functions
    Volle, M
    RECENT ADVANCES IN OPTIMIZATION, 1997, 452 : 365 - 379
  • [37] REMARKS ON t-QUASICONVEX FUNCTIONS
    Nikodem, Kazimierz
    Nikodem, Mateusz
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (04): : 711 - 717
  • [38] Characterizations of Nonsmooth Robustly Quasiconvex Functions
    Bui, Hoa T.
    Pham Duy Khanh
    Thi Tu Trinh Tran
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (03) : 775 - 786
  • [39] JENSEN'S INEQUALITY FOR QUASICONVEX FUNCTIONS
    Dragomir, S. S.
    Pearce, C. E. M.
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (02): : 279 - 291
  • [40] FUNCTIONS WITH A BOUNDED HESSIAN
    DEMENGEL, F
    ANNALES DE L INSTITUT FOURIER, 1984, 34 (02) : 155 - 190