Linear k-blocking Sets

被引:0
|
作者
Guglielmo Lunardon
机构
[1] Dipartimento di Matematica e Applicazioni,
[2] Università degli Studi di Napoli "Federico II"; Complesso di Monte S. Angelo–Edificio T,undefined
[3] V. Cintia,undefined
[4] I-80126 Napoli,undefined
[5] Italy; E-mail: lunardon@unina.it,undefined
来源
Combinatorica | 2001年 / 21卷
关键词
AMS Subject Classification (2000) Classes:  51E20; 51E21, 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
We point out the relationship between normal spreads and the linear k-blocking sets introduced in [9]. We give a characterisation of linear k-blocking sets proving that the projections and the embeddings of a PG(kt,q) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are linear k-blocking sets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Finally, we construct some new examples.
引用
收藏
页码:571 / 581
页数:10
相关论文
共 50 条
  • [1] Linear k-blocking sets
    Lunardon, G
    COMBINATORICA, 2001, 21 (04) : 571 - 581
  • [2] A geometric characterisation of linear k-blocking sets
    Lunardon, G.
    Polito, P.
    Polverino, O.
    JOURNAL OF GEOMETRY, 2022, 74 (1-2) : 120 - 122
  • [3] A geometric characterisation of linear k-blocking sets
    G. Lunardon
    P. Polito
    O. Polverino
    Journal of Geometry, 2002, 74 : 120 - 122
  • [4] Linear point sets and Redei type k-blocking sets in PG(n, q)
    Storme, L.
    Sziklai, P.
    1600, Kluwer Academic Publishers (14):
  • [5] Linear point sets and Redei type k-blocking sets in PG(n, q)
    Storme, L
    Sziklai, P
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (03) : 221 - 228
  • [6] Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q)
    L. Storme
    P. Sziklai
    Journal of Algebraic Combinatorics, 2001, 14 : 221 - 228
  • [7] A proof of the linearity conjecture for k-blocking sets in PG(n, p3), p prime
    Lavrauw, M.
    Storme, L.
    de Voorde, G. Van
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 808 - 818
  • [8] Linear blocking sets: a survey
    Lunardon, G
    Polverino, O
    FINITE FIELDS AND APPLICATIONS, 2001, : 356 - 362
  • [9] Blocking sets in small finite linear spaces
    Pretorius, Lou A.
    Swanepoel, Konrad J.
    ARS COMBINATORIA, 2006, 80 : 275 - 315
  • [10] On linear blocking sets in PG(2, qt)
    Polito, P
    Polverino, O
    DISCRETE MATHEMATICS, 2002, 255 (1-3) : 343 - 348