Linear k-blocking Sets

被引:0
|
作者
Guglielmo Lunardon
机构
[1] Dipartimento di Matematica e Applicazioni,
[2] Università degli Studi di Napoli "Federico II"; Complesso di Monte S. Angelo–Edificio T,undefined
[3] V. Cintia,undefined
[4] I-80126 Napoli,undefined
[5] Italy; E-mail: lunardon@unina.it,undefined
来源
Combinatorica | 2001年 / 21卷
关键词
AMS Subject Classification (2000) Classes:  51E20; 51E21, 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
We point out the relationship between normal spreads and the linear k-blocking sets introduced in [9]. We give a characterisation of linear k-blocking sets proving that the projections and the embeddings of a PG(kt,q) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are linear k-blocking sets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Finally, we construct some new examples.
引用
收藏
页码:571 / 581
页数:10
相关论文
共 50 条
  • [31] Blocking and double blocking sets in finite planes
    De Beule, Jan
    Heger, Tamas
    Szonyi, Tamas
    Van de Voorde, Geertrui
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02):
  • [32] Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes
    Simeon Ball
    Szabolcs L. Fancsali
    Designs, Codes and Cryptography, 2009, 53 : 119 - 136
  • [33] Multiple blocking sets in finite projective spaces and improvements to the Griesmer bound for linear codes
    Ball, Simeon
    Fancsali, Szabolcs L.
    DESIGNS CODES AND CRYPTOGRAPHY, 2009, 53 (02) : 119 - 136
  • [34] Estimation of common linear functional relationships in k data sets
    Dougherty, GG
    BIOMETRIKA, 1997, 84 (01) : 103 - 110
  • [35] A characterization of multiple (n-k)-blocking sets in projective spaces of square order
    Ferret, S.
    Storme, L.
    Sziklai, P.
    Weiner, Zs.
    ADVANCES IN GEOMETRY, 2012, 12 (04) : 739 - 756
  • [36] On small blocking sets and their linearity
    Sziklai, Peter
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) : 1167 - 1182
  • [37] The spectrum of minimal blocking sets
    Innamorati, S
    Maturo, A
    DISCRETE MATHEMATICS, 1999, 208 : 339 - 347
  • [38] BLOCKING SETS IN STEINER SYSTEMS
    BERARDI, L
    EUGENI, F
    FERRI, O
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3D (01): : 141 - 164
  • [39] Minimal multiple blocking sets
    Bishnoi, Anurag
    Mattheus, Sam
    Schillewaert, Jeroen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [40] On blocking sets of inversive planes
    Kiss, G
    Marcugini, S
    Pambianco, F
    JOURNAL OF COMBINATORIAL DESIGNS, 2005, 13 (04) : 268 - 275