Linear k-blocking Sets

被引:0
|
作者
Guglielmo Lunardon
机构
[1] Dipartimento di Matematica e Applicazioni,
[2] Università degli Studi di Napoli "Federico II"; Complesso di Monte S. Angelo–Edificio T,undefined
[3] V. Cintia,undefined
[4] I-80126 Napoli,undefined
[5] Italy; E-mail: lunardon@unina.it,undefined
来源
Combinatorica | 2001年 / 21卷
关键词
AMS Subject Classification (2000) Classes:  51E20; 51E21, 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
We point out the relationship between normal spreads and the linear k-blocking sets introduced in [9]. We give a characterisation of linear k-blocking sets proving that the projections and the embeddings of a PG(kt,q) in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are linear k-blocking sets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Finally, we construct some new examples.
引用
收藏
页码:571 / 581
页数:10
相关论文
共 50 条
  • [41] BLOCKING SETS AND THE PACKING PROBLEM
    GRONCHI, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7A (02): : 227 - 236
  • [42] Blocking sets in line Grassmannians
    Zanella, Corrado
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1805 - 1811
  • [43] On the stability of small blocking sets
    Szonyi, Tamas
    Weiner, Zsuzsa
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 40 (01) : 279 - 292
  • [44] Unital designs with blocking sets
    Al-Azemi, Abdullah
    Betten, Anton
    Betten, Dieter
    DISCRETE APPLIED MATHEMATICS, 2014, 163 : 102 - 112
  • [45] Blocking Sets in André Planes
    Pompeo Polito
    Olga Polverino
    Geometriae Dedicata, 1999, 75 : 199 - 207
  • [46] Arcs, blocking sets, and minihypers
    Hamada, N
    Helleseth, T
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (11) : 159 - 168
  • [47] On cutting blocking sets and their codes
    Bartoli, Daniele
    Cossidente, Antonio
    Marino, Giuseppe
    Pavese, Francesco
    FORUM MATHEMATICUM, 2022, 34 (02) : 347 - 368
  • [48] BLOCKING SETS IN STEINER SYSTEMS
    LO FARO, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4A (01): : 71 - 76
  • [49] BLOCKING SETS IN FINITE PLANES
    BRUEN, A
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 543 - &
  • [50] HYPERPLANE COVERINGS AND BLOCKING SETS
    BRUEN, AA
    THAS, JA
    MATHEMATISCHE ZEITSCHRIFT, 1982, 181 (03) : 407 - 409