A geometric characterisation of linear k-blocking sets

被引:16
|
作者
Lunardon, G. [1 ]
Polito, P. [1 ]
Polverino, O. [1 ]
机构
[1] Dipartimento Matemat & Applicaz, Via Cintia, I-80126 Naples, Italy
关键词
k-blocking sets; canonical subgeometries;
D O I
10.1007/PL00012530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that any linear k-blocking set is either a canonical subgeometry or a projection of some canonical subgeometry.
引用
收藏
页码:120 / 122
页数:3
相关论文
共 50 条
  • [1] A geometric characterisation of linear k-blocking sets
    G. Lunardon
    P. Polito
    O. Polverino
    Journal of Geometry, 2002, 74 : 120 - 122
  • [2] Linear k-blocking Sets
    Guglielmo Lunardon
    Combinatorica, 2001, 21 : 571 - 581
  • [3] Linear k-blocking sets
    Lunardon, G
    COMBINATORICA, 2001, 21 (04) : 571 - 581
  • [4] Linear point sets and Redei type k-blocking sets in PG(n, q)
    Storme, L.
    Sziklai, P.
    1600, Kluwer Academic Publishers (14):
  • [5] Linear point sets and Redei type k-blocking sets in PG(n, q)
    Storme, L
    Sziklai, P
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (03) : 221 - 228
  • [6] Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q)
    L. Storme
    P. Sziklai
    Journal of Algebraic Combinatorics, 2001, 14 : 221 - 228
  • [7] A proof of the linearity conjecture for k-blocking sets in PG(n, p3), p prime
    Lavrauw, M.
    Storme, L.
    de Voorde, G. Van
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 808 - 818
  • [8] Linear blocking sets: a survey
    Lunardon, G
    Polverino, O
    FINITE FIELDS AND APPLICATIONS, 2001, : 356 - 362
  • [9] The geometric field of linearity of linear sets
    Jena, Dibyayoti
    van de Voorde, Geertrui
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (03) : 779 - 799
  • [10] The geometric field of linearity of linear sets
    Dibyayoti Jena
    Geertrui Van de Voorde
    Designs, Codes and Cryptography, 2022, 90 : 779 - 799