Additive Complements for a Given Asymptotic Density

被引:0
|
作者
Alain Faisant
Georges Grekos
Ram Krishna Pandey
Sai Teja Somu
机构
[1] Université de Saint-Étienne,Institut Camille Jordan
[2] Indian Institute of Technology,Department of Mathematics
[3] Aspireal Technologies Private Limited,undefined
[4] Jubilee Hills,undefined
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Additive complements; asymptotic density; Primary 11B05; Secondary 11B13;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the existence of subsets A and B of N:={0,1,2,⋯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}:=\{0,1,2,\dots \}$$\end{document}, such that the sumset A+B:={a+b:a∈A,b∈B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+B:=\{a+b:a\in A,b\in B\}$$\end{document} has prescribed asymptotic density. We solve the particular case in which B is a given finite subset of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}$$\end{document} and also the case when B=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=A$$\end{document}; in the later case, we generalize our result to kA:={x1+⋯+xk:xi∈A,i=1,⋯,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kA:=\{x_1+\cdots +x_k: x_i\in A, i=1,\dots ,k\}$$\end{document} for an integer k≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [21] A report on additive complements of the squares
    Ramana, DS
    NUMBER THEORY AND DISCRETE MATHEMATICS, 2002, : 161 - 167
  • [22] On the additive hexagon numbers complements
    Li chao
    Yang Cundian
    Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, : 71 - 74
  • [23] On Additive Complements with Special Structures
    Mohan
    Patil, Bhuwanesh Rao
    Pandey, Ram Krishna
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (03)
  • [24] On minimal additive complements of integers
    Kiss, Sandor Z.
    Sandor, Csaba
    Yang, Quan-Hui
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 344 - 353
  • [25] On additive complements. IV
    Chen, Yong-Gao
    Fang, Jin-Hui
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
  • [26] Asymptotic density in quasi-logarithmic additive number systems
    Nietlispach, Bruno
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 : 267 - 287
  • [27] Sparse sets in the complements of graphs with given girth
    Kostochka, AV
    Woodall, DR
    DISCRETE MATHEMATICS, 2001, 233 (1-3) : 163 - 174
  • [28] Additive Complements with Narkiewicz's Condition
    Yong-Gao Chen
    Jin-Hui Fang
    Combinatorica, 2019, 39 : 813 - 823
  • [29] Additive Complements with Narkiewicz's Condition
    Chen, Yong-Gao
    Fang, Jin-Hui
    COMBINATORICA, 2019, 39 (04) : 813 - 823
  • [30] A note on minimal additive complements of integers
    Kwon, Andrew
    DISCRETE MATHEMATICS, 2019, 342 (07) : 1912 - 1918