机构:
Indian Stat Inst, Stat Math Unit, SJS Sansanwal Marg, New Delhi 110016, Delhi, IndiaIndian Stat Inst, Stat Math Unit, SJS Sansanwal Marg, New Delhi 110016, Delhi, India
Mohan
[1
]
Patil, Bhuwanesh Rao
论文数: 0引用数: 0
h-index: 0
机构:
Govt Engn Coll, Dept Appl Sci & Humanities, Nawada 805111, Bihar, IndiaIndian Stat Inst, Stat Math Unit, SJS Sansanwal Marg, New Delhi 110016, Delhi, India
Patil, Bhuwanesh Rao
[2
]
Pandey, Ram Krishna
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttarakhand, IndiaIndian Stat Inst, Stat Math Unit, SJS Sansanwal Marg, New Delhi 110016, Delhi, India
Pandey, Ram Krishna
[3
]
机构:
[1] Indian Stat Inst, Stat Math Unit, SJS Sansanwal Marg, New Delhi 110016, Delhi, India
Let A be a set of natural numbers. A set B of natural numbers, is said to be an additive complement of the set A if all sufficiently large natural numbers can be represented as x+y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x+y$$\end{document} for some x is an element of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in A$$\end{document} and y is an element of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y\in B$$\end{document}. This article describes various types of additive complements of the set A such as those additive complements of A that do not intersect A, additive complements which are the union of disjoint infinite arithmetic progressions, and additive complements having various densities etc. As an application, we also focus on the structure of the sumset of an arithmetic progression and a geometric progression. Besides this, for a given positive real number alpha <= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \le 1$$\end{document} and a finite set A, we investigate a set B such that B can be written as a union of disjoint infinite arithmetic progressions with the natural density of A+B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+B$$\end{document} equal to alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Chen, Yong-Gao
Fang, Jin-Hui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
机构:
Nanjing Univ Informat Sci Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R China
Fang, JinHui
Chen, YongGao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R China
机构:
Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R ChinaNanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
Fang, Jin-Hui
Chen, Yong-Gao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Peoples R ChinaNanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
机构:
Department of Mathematics, Nanjing University of Information Science & TechnologyDepartment of Mathematics, Nanjing University of Information Science & Technology
FANG JinHui
CHEN YongGao
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematical Sciences and Institute of Mathematics,Nanjing Normal UniversityDepartment of Mathematics, Nanjing University of Information Science & Technology
机构:
Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R China
Fang, Jin-Hui
Chen, Yong-Gao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Jiangsu, Peoples R China