Additive Complements for a Given Asymptotic Density

被引:0
|
作者
Alain Faisant
Georges Grekos
Ram Krishna Pandey
Sai Teja Somu
机构
[1] Université de Saint-Étienne,Institut Camille Jordan
[2] Indian Institute of Technology,Department of Mathematics
[3] Aspireal Technologies Private Limited,undefined
[4] Jubilee Hills,undefined
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Additive complements; asymptotic density; Primary 11B05; Secondary 11B13;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the existence of subsets A and B of N:={0,1,2,⋯}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}:=\{0,1,2,\dots \}$$\end{document}, such that the sumset A+B:={a+b:a∈A,b∈B}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+B:=\{a+b:a\in A,b\in B\}$$\end{document} has prescribed asymptotic density. We solve the particular case in which B is a given finite subset of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}$$\end{document} and also the case when B=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=A$$\end{document}; in the later case, we generalize our result to kA:={x1+⋯+xk:xi∈A,i=1,⋯,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kA:=\{x_1+\cdots +x_k: x_i\in A, i=1,\dots ,k\}$$\end{document} for an integer k≥2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [41] Entire functions with given asymptotic behavior
    Youlmukhametov, RS
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1998, 32 (03) : 183 - 191
  • [42] On the determination of the asymptotic developments of a given function
    Ford, WB
    ANNALS OF MATHEMATICS, 1909, 11 : 115 - 127
  • [43] ON ENTIRE FUNCTIONS WITH GIVEN ASYMPTOTIC BEHAVIOR
    Isaev, K. P.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 : 12 - 29
  • [44] Asymptotic normality of the posterior given a statistic
    Yuan, A
    Clarke, B
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2004, 32 (02): : 119 - 137
  • [45] Minimal additive complements in finitely generated abelian groups
    Arindam Biswas
    Jyoti Prakash Saha
    The Ramanujan Journal, 2022, 57 : 215 - 238
  • [46] Minimal additive complements in finitely generated abelian groups
    Biswas, Arindam
    Saha, Jyoti Prakash
    RAMANUJAN JOURNAL, 2022, 57 (01): : 215 - 238
  • [47] Entire functions with given asymptotic behavior
    R. S. Youlmukhametov
    Functional Analysis and Its Applications, 1998, 32 : 183 - 191
  • [48] Lagrange-like spectrum of perfect additive complements
    Barany, Balazs
    Fang, Jin-Hui
    Sandor, Csaba
    ACTA ARITHMETICA, 2024, 212 (03) : 269 - 287
  • [49] On a problem of Chen and Fang related to infinite additive complements
    Kiss, Sandor Z.
    Sandor, Csaba
    ACTA ARITHMETICA, 2021, 200 (02) : 213 - 220
  • [50] Asymptotic Independence and Additive Functionals
    Endre Csáki
    Antónia Földes
    Journal of Theoretical Probability, 2000, 13 : 1123 - 1144