The choice of an autocorrelation length in dark-field lung imaging

被引:0
|
作者
Simon Spindler
Dominik Etter
Michał Rawlik
Maxim Polikarpov
Lucia Romano
Zhitian Shi
Konstantins Jefimovs
Zhentian Wang
Marco Stampanoni
机构
[1] Swiss Light Source,Department of Engineering Physics
[2] Paul Scherrer Institute,Key Laboratory of Particle & Radiation Imaging
[3] Institute for Biomedical Engineering,undefined
[4] ETH Zürich,undefined
[5] Tsinghua University,undefined
[6] (Tsinghua University) Ministry of Education,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Respiratory diseases are one of the most common causes of death, and their early detection is crucial for prompt treatment. X-ray dark-field radiography (XDFR) is a promising tool to image objects with unresolved micro-structures such as lungs. Using Talbot-Lau XDFR, we imaged inflated porcine lungs together with Polymethylmethacrylat (PMMA) microspheres (in air) of diameter sizes between 20 and 500 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} over an autocorrelation range of 0.8–5.2 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}. The results indicate that the dark-field extinction coefficient of porcine lungs is similar to that of densely-packed PMMA spheres with diameter of 200μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${200}\,\upmu \hbox {m}$$\end{document}, which is approximately the mean alveolar structure size. We evaluated that, in our case, the autocorrelation length would have to be limited to 0.57μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0.57}\,\upmu \hbox {m}$$\end{document} in order to image 20cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${20}\,\hbox {cm}$$\end{document}-thick lung tissue without critical visibility reduction (signal saturation). We identify the autocorrelation length to be the critical parameter of an interferometer that allows to avoid signal saturation in clinical lung dark-field imaging.
引用
收藏
相关论文
共 50 条
  • [41] Dark-field imaging of the in vitro corrosion of biodegradable magnesium screws
    Senck, Sascha
    Glinz, Jonathan
    Salaberger, Daniel
    Heupl, Sarah
    Kastner, Johann
    Trieb, Klemens
    Koutny, Daniel
    Gneiger, Stefan
    e-Journal of Nondestructive Testing, 2024, 29 (03):
  • [42] Structured dark-field imaging for single nano-particles
    陈健
    高昆
    王志立
    云文兵
    吴自玉
    Chinese Physics B, 2015, 24 (08) : 497 - 500
  • [43] Scattering Imaging of Single Quantum Dots with Dark-Field Microscopy
    Bu, Xiaobing
    Chen, Huaping
    Gai, Hongwei
    Yang, Ronghua
    Yeung, Edward S.
    ANALYTICAL CHEMISTRY, 2009, 81 (17) : 7507 - 7509
  • [44] RESOLUTION AND OPTIMUM CONDITIONS FOR DARK-FIELD STEM AND CTEM IMAGING
    HAMMEL, M
    ROSE, H
    ULTRAMICROSCOPY, 1993, 49 (1-4) : 81 - 86
  • [45] Quantification of the neutron dark-field imaging signal in grating interferometry
    Gruenzweig, C.
    Kopecek, J.
    Betz, B.
    Kaestner, A.
    Jefimovs, K.
    Kohlbrecher, J.
    Gasser, U.
    Bunk, O.
    David, C.
    Lehmann, E.
    Donath, T.
    Pfeiffer, F.
    PHYSICAL REVIEW B, 2013, 88 (12):
  • [46] Subangstrom resolution imaging using annular dark-field STEM
    Nellist, PD
    Pennycook, SJ
    ELECTRON MICROSCOPY AND ANALYSIS 1999, 1999, (161): : 315 - 318
  • [47] Structured dark-field imaging for single nano-particles
    Chen Jian
    Gao Kun
    Wang Zhi-Li
    Yun Wen-Bing
    Wu Zi-Yu
    CHINESE PHYSICS B, 2015, 24 (08)
  • [48] Signal Decomposition for X-ray Dark-Field Imaging
    Kaeppler, Sebastian
    Bayer, Florian
    Weber, Thomas
    Maier, Andreas
    Anton, Gisela
    Hornegger, Joachim
    Beckmann, Matthias
    Fasching, Peter A.
    Hartmann, Arndt
    Heindl, Felix
    Michel, Thilo
    Oezguel, Gueluemser
    Pelzer, Georg
    Rauh, Claudia
    Rieger, Jens
    Schulz-Wendtland, Ruediger
    Uder, Michael
    Wachter, David
    Wenkel, Evelyn
    Riess, Christian
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 170 - +
  • [49] First Experiences with In-vivo X-ray Dark-Field Imaging of Lung Cancer in Mice
    Gromann, Lukas B.
    Scherer, Kai
    Yaroshenko, Andre
    Boeluekbas, Deniz Ali
    Hellbach, Katharina
    Meinel, Felix G.
    Braunagel, Margarita
    Eickelberg, Oliver
    Reiser, Maximilian F.
    Pfeiffer, Franz
    Meiners, Silke
    Herzen, Julia
    MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [50] Influence of light polarization state on the imaging quality of dark-field imaging system
    Chen, Dan
    Wang, Yuqin
    Zhang, Rongzhu
    JOURNAL OF OPTICS, 2022, 24 (03)