The choice of an autocorrelation length in dark-field lung imaging

被引:0
|
作者
Simon Spindler
Dominik Etter
Michał Rawlik
Maxim Polikarpov
Lucia Romano
Zhitian Shi
Konstantins Jefimovs
Zhentian Wang
Marco Stampanoni
机构
[1] Swiss Light Source,Department of Engineering Physics
[2] Paul Scherrer Institute,Key Laboratory of Particle & Radiation Imaging
[3] Institute for Biomedical Engineering,undefined
[4] ETH Zürich,undefined
[5] Tsinghua University,undefined
[6] (Tsinghua University) Ministry of Education,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Respiratory diseases are one of the most common causes of death, and their early detection is crucial for prompt treatment. X-ray dark-field radiography (XDFR) is a promising tool to image objects with unresolved micro-structures such as lungs. Using Talbot-Lau XDFR, we imaged inflated porcine lungs together with Polymethylmethacrylat (PMMA) microspheres (in air) of diameter sizes between 20 and 500 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document} over an autocorrelation range of 0.8–5.2 μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu \hbox {m}$$\end{document}. The results indicate that the dark-field extinction coefficient of porcine lungs is similar to that of densely-packed PMMA spheres with diameter of 200μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${200}\,\upmu \hbox {m}$$\end{document}, which is approximately the mean alveolar structure size. We evaluated that, in our case, the autocorrelation length would have to be limited to 0.57μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0.57}\,\upmu \hbox {m}$$\end{document} in order to image 20cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${20}\,\hbox {cm}$$\end{document}-thick lung tissue without critical visibility reduction (signal saturation). We identify the autocorrelation length to be the critical parameter of an interferometer that allows to avoid signal saturation in clinical lung dark-field imaging.
引用
收藏
相关论文
共 50 条
  • [31] Dark-Field Imaging: Recent developments and potential clinical applications
    Ando, Masami
    Sunaguchi, Naoki
    Shimao, Daisuke
    Pan, Adam
    Yuasa, Tetsuya
    Mori, Kensaku
    Suzuki, Yoshifumi
    Jin, Ge
    Kim, Jong-Ki
    Lim, Jae-Hong
    Seo, Seung-Jun
    Ichihara, Shu
    Ohura, Norihiko
    Gupta, Rajiv
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2016, 32 (12): : 1801 - 1812
  • [32] Molecular imaging using gold nanoparticles and a dark-field microscope
    Morimoto, Yuji
    Nakagishi, Yoshinori
    Kawauchi, Satoko
    Nishiyama, Nobuhiro
    Jang, Woo-Dong
    Kataoka, Kazunori
    Tsuda, Hitoshi
    Kikuchi, Makoto
    CANCER RESEARCH, 2006, 66 (08)
  • [33] Image processing in optic damage inspection of dark-field imaging
    Sun Zhi-hong
    Peng Zhi-tao
    Liu Hua
    Xie Ya-ping
    Jing Feng
    Wu Deng-sheng
    INFRARED AND PHOTOELECTRONIC IMAGERS AND DETECTOR DEVICES II, 2006, 6294
  • [34] ATOMIC IMAGING USING THE DARK-FIELD ANNULAR DETECTOR IN THE STEM
    ISAACSON, M
    KOPF, D
    OHTSUKI, M
    UTLAUT, M
    ULTRAMICROSCOPY, 1979, 4 (01) : 101 - 104
  • [35] A Novel Terahertz Dark-Field Imaging Method for Contrast Enhancement
    Liu, Hui
    Wu, Shiyou
    Zhao, Meng
    Wan, Zhihang
    Fang, Guangyou
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (10) : 5047 - 5053
  • [36] Energy weighted x-ray dark-field imaging
    Pelzer, Georg
    Zang, Andrea
    Anton, Gisela
    Bayer, Florian
    Horn, Florian
    Kraus, Manuel
    Rieger, Jens
    Ritter, Andre
    Wandner, Johannes
    Weber, Thomas
    Fauler, Alex
    Fiederle, Michael
    Wong, Winnie S.
    Campbell, Michael
    Meiser, Jan
    Meyer, Pascal
    Mohr, Juergen
    Michel, Thilo
    OPTICS EXPRESS, 2014, 22 (20): : 24507 - 24515
  • [37] Numerical dark-field imaging using deep-learning
    Meng, Zhang
    Ding, Liqi
    Feng, Shaotong
    Xing, FangJian
    Nie, Shouping
    Ma, Jun
    Pedrini, Giancarlo
    Yuan, Caojin
    OPTICS EXPRESS, 2020, 28 (23): : 34266 - 34278
  • [38] Automated bacterial identification by angle resolved dark-field imaging
    Wilson, Benjamin K.
    Vigil, Genevieve D.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (09): : 1692 - 1701
  • [39] Quantitative Neutron Dark-Field Imaging of Milk: A Feasibility Study
    Kim, Youngju
    Valsecchi, Jacopo
    Oh, Ohsung
    Kim, Jongyul
    Lee, Seung Wook
    Boue, Francois
    Lutton, Evelyne
    Busi, Matteo
    Garvey, Christopher
    Strobl, Markus
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [40] Signal decomposition for X-ray dark-field imaging
    Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
    不详
    不详
    Kaeppler, Sebastian, 1600, Springer Verlag (8673):