Varieties of idempotent distributive semirings with regular multiplicative reduct

被引:0
|
作者
A. K. Bhuniya
R. Debnath
机构
[1] Visva-Bharati,Department of Mathematics
[2] Paruldanga Nasaratpur High School,undefined
来源
Semigroup Forum | 2015年 / 90卷
关键词
Idempotent distributive semiring; Regular band; Normal band; Spined product;
D O I
暂无
中图分类号
学科分类号
摘要
The multiplicative reduct of an idempotent distributive semiring S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a regular band if and only if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a spined product of a semiring satisfying xy+xyx≈xyx+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy+xyx \approx xyx+xy$$\end{document} and a semiring satisfying yx+xyx≈xyx+yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yx+xyx \approx xyx+yx$$\end{document} with respect to a semiring satisfying xy+yx≈yx+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy+yx \approx yx+xy$$\end{document}. In a similar way, we characterize idempotent distributive semirings whose multiplicative reduct is a normal band.
引用
收藏
页码:843 / 847
页数:4
相关论文
共 50 条
  • [41] Distributive Lattices of λ-simple Semirings
    Mondal, Tapas Kumar
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2022, 17 (01): : 47 - 55
  • [42] Semirings Which Are Distributive Lattices of k-Simple Semirings
    Bhuniya, A. K.
    Mondal, T. K.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (03) : 309 - 318
  • [43] Semilinear idempotent distributive £-monoids
    Santschi, Simon
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)
  • [44] MULTIPLICATIVE CANCELLATIVITY OF SEMIRINGS AND SEMIGROUPS
    WEINERT, HJ
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 35 (3-4): : 335 - 338
  • [45] Subdirectly irreducible commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Algebra universalis, 2016, 76 : 327 - 337
  • [46] The variety of commutative additively and multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2018, 96 (02) : 409 - 415
  • [47] Proper/Residually-Finite Idempotent Semirings
    Griffing, Gary
    SEMIGROUP FORUM, 2013, 86 (03) : 486 - 510
  • [48] Congruence-simple multiplicatively idempotent semirings
    Kepka, Tomas
    Korbelar, Miroslav
    Landsmann, Guenter
    ALGEBRA UNIVERSALIS, 2023, 84 (02)
  • [49] L-subvarieties of the variety of idempotent semirings
    Zhao, XZ
    Shum, KP
    Guo, YQ
    ALGEBRA UNIVERSALIS, 2001, 46 (1-2) : 75 - 96
  • [50] Proper/Residually-Finite Idempotent Semirings
    Gary Griffing
    Semigroup Forum, 2013, 86 : 486 - 510