Varieties of idempotent distributive semirings with regular multiplicative reduct

被引:0
|
作者
A. K. Bhuniya
R. Debnath
机构
[1] Visva-Bharati,Department of Mathematics
[2] Paruldanga Nasaratpur High School,undefined
来源
Semigroup Forum | 2015年 / 90卷
关键词
Idempotent distributive semiring; Regular band; Normal band; Spined product;
D O I
暂无
中图分类号
学科分类号
摘要
The multiplicative reduct of an idempotent distributive semiring S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a regular band if and only if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a spined product of a semiring satisfying xy+xyx≈xyx+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy+xyx \approx xyx+xy$$\end{document} and a semiring satisfying yx+xyx≈xyx+yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yx+xyx \approx xyx+yx$$\end{document} with respect to a semiring satisfying xy+yx≈yx+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy+yx \approx yx+xy$$\end{document}. In a similar way, we characterize idempotent distributive semirings whose multiplicative reduct is a normal band.
引用
收藏
页码:843 / 847
页数:4
相关论文
共 50 条
  • [31] Multiplicatively Idempotent Semirings with Annihilator Condition
    E. M. Vechtomov
    A. A. Petrov
    Russian Mathematics, 2023, 67 : 23 - 31
  • [32] Derivations in a Product of Additively Idempotent Semirings
    Trendafilov, Ivan
    Tzvetkov, Radoslav
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [33] Cyclic semirings with idempotent noncommutative addition
    E. M. Vechtomov
    I. V. Lubyagina
    Journal of Mathematical Sciences, 2012, 185 (3) : 367 - 380
  • [34] Interval Versions of Eigenspaces in Idempotent Semirings
    Plavka, Jan
    40TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2022, 2022, : 286 - 292
  • [35] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [36] Non-termination in idempotent semirings
    Hoefner, Peter
    Struth, Georg
    RELATIONS AND KLEENE ALGEBRA IN COMPUTER SCIENCE, 2008, 4988 : 206 - 220
  • [37] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [38] REGULAR SEMIRINGS
    ZELEZNEKOW, J
    SEMIGROUP FORUM, 1981, 23 (02) : 119 - 136
  • [39] Finite simple additively idempotent semirings
    Kendziorra, Andreas
    Zumbraegel, Jens
    JOURNAL OF ALGEBRA, 2013, 388 : 43 - 64
  • [40] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    Semigroup Forum, 2017, 94 : 610 - 617