Varieties of idempotent distributive semirings with regular multiplicative reduct

被引:0
|
作者
A. K. Bhuniya
R. Debnath
机构
[1] Visva-Bharati,Department of Mathematics
[2] Paruldanga Nasaratpur High School,undefined
来源
Semigroup Forum | 2015年 / 90卷
关键词
Idempotent distributive semiring; Regular band; Normal band; Spined product;
D O I
暂无
中图分类号
学科分类号
摘要
The multiplicative reduct of an idempotent distributive semiring S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a regular band if and only if S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} is a spined product of a semiring satisfying xy+xyx≈xyx+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy+xyx \approx xyx+xy$$\end{document} and a semiring satisfying yx+xyx≈xyx+yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yx+xyx \approx xyx+yx$$\end{document} with respect to a semiring satisfying xy+yx≈yx+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy+yx \approx yx+xy$$\end{document}. In a similar way, we characterize idempotent distributive semirings whose multiplicative reduct is a normal band.
引用
收藏
页码:843 / 847
页数:4
相关论文
共 50 条