Poisson–Lie Diffeomorphism Groups

被引:0
|
作者
Ognyan S. Stoyanov
机构
来源
关键词
Poisson–Lie group; diffeomorphism group; infinite jet; classical ; -matrix;
D O I
暂无
中图分类号
学科分类号
摘要
We explicitly construct a class of coboundary Poisson–Lie structures on the group of formal diffeomorphisms of ℝn. Equivalently, these give rise to a class of coboundary triangular Lie bialgebra structures on the Lie algebra Wn of formal vector fields on ℝn. We conjecture that this class accounts for all such coboundary structures. The natural action of the constructed Poisson–Lie diffeomorphism groups gives rise to large classes of compatible Poisson structures on ℝn, thus making it a Poisson space. Moreover, the canonical action of the Poisson–Lie groups FDiff(ℝm) × FDiffℝn) gives rise to classes of compatible Poisson structures on the space J∞(ℝm,ℝn) of infinite jets of smooth maps ℝm → ℝn, which makes it also a Poisson space for this action. Poisson modules of generalized densities are also constructed. Initial steps towards a classification of these structures are taken.
引用
收藏
页码:185 / 223
页数:38
相关论文
共 50 条
  • [21] Graded Poisson lie structures on classical complex Lie groups
    Arutyunov, GE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) : 673 - 689
  • [22] CENTRAL EXTENSIONS OF LIE BIALGEBRAS AND POISSON-LIE GROUPS
    BENAYED, M
    JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (03) : 301 - 304
  • [23] Lie bialgebras of complex type and associated Poisson Lie groups
    Andrada, A.
    Barberis, M. L.
    Ovando, G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1310 - 1328
  • [24] Geometry of Tangent Poisson-Lie Groups
    Al-Dayel, Ibrahim
    Aloui, Foued
    Deshmukh, Sharief
    MATHEMATICS, 2023, 11 (01)
  • [25] Quantization of Poisson-Lie groups and applications
    Bidegain, F
    Pinczon, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (02) : 295 - 332
  • [26] LIE-POISSON GROUPS - REMARKS AND EXAMPLES
    CAHEN, M
    GUTT, S
    OHN, C
    PARKER, M
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (04) : 343 - 353
  • [27] QUANTIZATIONS OF POISSON LIE GROUPS AS NONCOMMUTATIVE MANIFOLDS
    Neshveyev, Sergey
    Tuset, Lars
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 504 - +
  • [28] POISSON-LIE QUASI-GROUPS
    BANGOURA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (09): : 975 - 978
  • [29] Poisson-Lie Groups and Gauge Theory
    Meusburger, Catherine
    SYMMETRY-BASEL, 2021, 13 (08):
  • [30] POISSON LIE-GROUPS AND PENTAGONAL TRANSFORMATIONS
    ZAKRZEWSKI, S
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 24 (01) : 13 - 19