Geometry of Tangent Poisson-Lie Groups

被引:0
|
作者
Al-Dayel, Ibrahim [1 ]
Aloui, Foued [1 ]
Deshmukh, Sharief [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia
关键词
Poisson geometry; Riemannian geometry; Lie group; Lie algebra; COMPATIBILITY; BUNDLE;
D O I
10.3390/math11010240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Poisson-Lie group equipped with a left invariant contravariant pseudo-Riemannian metric. There are many ways to lift the Poisson structure on G to the tangent bundle TG of G. In this paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle TG, and we express in different cases the contravariant Levi-Civita connection and curvature of TG in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that the space of differential forms omega*(G) on G is a differential graded Poisson algebra if, and only if, omega*(TG) is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian Poisson-Lie group if, and only if, the Sanchez de Alvarez tangent Poisson-Lie group TG is also a pseudo-Riemannian Poisson-Lie group. Finally, some examples of pseudo-Riemannian tangent Poisson-Lie groups are given.
引用
收藏
页数:18
相关论文
共 50 条