Geometry of Tangent Poisson-Lie Groups

被引:0
|
作者
Al-Dayel, Ibrahim [1 ]
Aloui, Foued [1 ]
Deshmukh, Sharief [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia
关键词
Poisson geometry; Riemannian geometry; Lie group; Lie algebra; COMPATIBILITY; BUNDLE;
D O I
10.3390/math11010240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Poisson-Lie group equipped with a left invariant contravariant pseudo-Riemannian metric. There are many ways to lift the Poisson structure on G to the tangent bundle TG of G. In this paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle TG, and we express in different cases the contravariant Levi-Civita connection and curvature of TG in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that the space of differential forms omega*(G) on G is a differential graded Poisson algebra if, and only if, omega*(TG) is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian Poisson-Lie group if, and only if, the Sanchez de Alvarez tangent Poisson-Lie group TG is also a pseudo-Riemannian Poisson-Lie group. Finally, some examples of pseudo-Riemannian tangent Poisson-Lie groups are given.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Lotka-Volterra systems as Poisson-Lie dynamics on solvable groups
    Ballesteros, A.
    Blasco, A.
    Musso, F.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 115 - 119
  • [42] Riemannian Geometry of Two Families of Tangent Lie Groups
    F. Asgari
    H. R. Salimi Moghaddam
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 193 - 203
  • [43] Riemannian Geometry of Two Families of Tangent Lie Groups
    Asgari, F.
    Moghaddam, H. R. Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 193 - 203
  • [44] CLASSIFICATION OF FOUR-DIMENSIONAL REAL LIE BIALGEBRAS OF SYMPLECTIC TYPE AND THEIR POISSON-LIE GROUPS
    Abedi-Fardad, J.
    Rezaei-Aghdam, A.
    Haghighatdoost, Gh.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (01) : 1 - 17
  • [45] Poisson-Lie T-duality
    Klimcik, C
    NUCLEAR PHYSICS B, 1996, : 116 - 121
  • [46] Poisson-Lie structures on the Galilei group
    Brihaye, Y
    Kowalczyk, E
    Maslanka, P
    ACTA PHYSICA POLONICA B, 2003, 34 (05): : 2589 - 2609
  • [47] A note on Poisson-Lie algebroids (I)
    Popescu, Liviu
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2009, 14 (02): : 79 - 89
  • [48] POISSON-LIE GROUP OF PSEUDODIFFERENTIAL SYMBOLS
    KHESIN, B
    ZAKHAREVICH, I
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) : 475 - 530
  • [49] Linearization of some Poisson-Lie tensor
    Chloup-Arnould, V
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 24 (01) : 46 - 52
  • [50] Poisson-Lie T-plurality
    von Unge, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (07):