Geometry of Tangent Poisson-Lie Groups

被引:0
|
作者
Al-Dayel, Ibrahim [1 ]
Aloui, Foued [1 ]
Deshmukh, Sharief [2 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] King Saud Univ, Dept Math, Riyadh 11495, Saudi Arabia
关键词
Poisson geometry; Riemannian geometry; Lie group; Lie algebra; COMPATIBILITY; BUNDLE;
D O I
10.3390/math11010240
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a Poisson-Lie group equipped with a left invariant contravariant pseudo-Riemannian metric. There are many ways to lift the Poisson structure on G to the tangent bundle TG of G. In this paper, we induce a left invariant contravariant pseudo-Riemannian metric on the tangent bundle TG, and we express in different cases the contravariant Levi-Civita connection and curvature of TG in terms of the contravariant Levi-Civita connection and the curvature of G. We prove that the space of differential forms omega*(G) on G is a differential graded Poisson algebra if, and only if, omega*(TG) is a differential graded Poisson algebra. Moreover, we show that G is a pseudo-Riemannian Poisson-Lie group if, and only if, the Sanchez de Alvarez tangent Poisson-Lie group TG is also a pseudo-Riemannian Poisson-Lie group. Finally, some examples of pseudo-Riemannian tangent Poisson-Lie groups are given.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] CLUSTER χ-VARIETIES FOR DUAL POISSON-LIE GROUPS. I
    Brahami, R.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (02) : 183 - 250
  • [32] Classification of real three-dimensional Poisson-Lie groups
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
  • [33] Poisson-Lie structures on Poincare and Euclidean groups in three dimensions
    Stachura, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (19): : 4555 - 4564
  • [34] Topological Poisson sigma models on Poisson-Lie groups -: art. no. 033
    Calvo, I
    Falceto, F
    García-Alvarez, D
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (10):
  • [35] Poisson-Lie structures as shifted Poisson structures
    Safronov, Pavel
    ADVANCES IN MATHEMATICS, 2021, 381
  • [36] On Deformation Quantization of Poisson-Lie Groups and Moduli Spaces of Flat Connections
    Li-Bland, David
    Severa, Pavol
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6734 - 6751
  • [37] Unimodularity and invariant volume forms for Hamiltonian dynamics on Poisson-Lie groups
    Gutierrez-Sagredo, I
    Iglesias Ponte, D.
    Marrero, J. C.
    Padron, E.
    Ravanpak, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (01)
  • [38] Integrable deformations of Rossler and Lorenz systems from Poisson-Lie groups
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) : 8207 - 8228
  • [39] Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Ballesteros, Angel
    Marrero, Juan C.
    Ravanpak, Zohreh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)
  • [40] Poisson-Lie T-duality and loop groups of Drinfeld doubles
    Klimcik, C
    Severa, P
    PHYSICS LETTERS B, 1996, 372 (1-2) : 65 - 71