Unimodularity and invariant volume forms for Hamiltonian dynamics on Poisson-Lie groups

被引:2
|
作者
Gutierrez-Sagredo, I [1 ]
Iglesias Ponte, D. [2 ,3 ]
Marrero, J. C. [2 ,3 ]
Padron, E. [2 ,3 ]
Ravanpak, Z. [4 ]
机构
[1] Univ Burgos, Dept Matemat & Comp, Burgos 09001, Spain
[2] Univ La Laguna, ULL CSIC Geometria Diferencial & Mecan Geometr, Dept Matemat Estadist & Invest Operat, San Cristobal De La Lagu, Spain
[3] Univ La Laguna, Inst Matemat & Aplicac IMAULL, San Cristobal De La Lagu, Spain
[4] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
modular vector fields; modular class; invariant volume forms; Hamiltonian systems; Poisson-Lie groups; SINGULAR-VALUE DECOMPOSITION; MODULAR CLASS; PRESERVATION; SYSTEMS;
D O I
10.1088/1751-8121/acb116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we discuss several relations between the existence of invariant volume forms for Hamiltonian systems on Poisson-Lie groups and the unimodularity of the Poisson-Lie structure. In particular, we prove that Hamiltonian vector fields on a Lie group endowed with a unimodular Poisson-Lie structure preserve a multiple of any left-invariant volume on the group. Conversely, we also prove that if there exists a Hamiltonian function such that the identity element of the Lie group is a nondegenerate singularity and the associated Hamiltonian vector field preserves a volume form, then the Poisson-Lie structure is necessarily unimodular. Furthermore, we illustrate our theory with different interesting examples, both on semisimple and unimodular Poisson-Lie groups.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Unimodularity and invariant volume forms for Hamiltonian dynamics on coisotropic Poisson homogeneous spaces
    Gutierrez-Sagredo, I.
    Iglesias-Ponte, D.
    Marrero, J. C.
    Padron, E.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (01)
  • [2] Poisson-Lie diffeomorphism groups
    Stoyanov, OS
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (03) : 185 - 223
  • [3] Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Ballesteros, Angel
    Marrero, Juan C.
    Ravanpak, Zohreh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)
  • [4] ON POISSON HOMOGENEOUS SPACES OF POISSON-LIE GROUPS
    DRINFELD, VG
    THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 95 (02) : 524 - 525
  • [5] Coadjoint Poisson actions of Poisson-Lie groups
    Kupershmidt, BA
    Stoyanov, OS
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (03) : 344 - 354
  • [6] Coadjoint Poisson Actions of Poisson-Lie Groups
    Boris A. Kupershmidt
    Ognyan S. Stoyanov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 344 - 354
  • [7] Geometry of Tangent Poisson-Lie Groups
    Al-Dayel, Ibrahim
    Aloui, Foued
    Deshmukh, Sharief
    MATHEMATICS, 2023, 11 (01)
  • [8] Quantization of Poisson-Lie groups and applications
    Bidegain, F
    Pinczon, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (02) : 295 - 332
  • [9] POISSON-LIE QUASI-GROUPS
    BANGOURA, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (09): : 975 - 978
  • [10] A local normal form for Hamiltonian actions of compact semisimple Poisson-Lie groups
    Harada, Megumi
    Lane, Jeremy
    Patterson, Aidan
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (05): : 775 - 812