Unimodularity and invariant volume forms for Hamiltonian dynamics on Poisson-Lie groups

被引:2
|
作者
Gutierrez-Sagredo, I [1 ]
Iglesias Ponte, D. [2 ,3 ]
Marrero, J. C. [2 ,3 ]
Padron, E. [2 ,3 ]
Ravanpak, Z. [4 ]
机构
[1] Univ Burgos, Dept Matemat & Comp, Burgos 09001, Spain
[2] Univ La Laguna, ULL CSIC Geometria Diferencial & Mecan Geometr, Dept Matemat Estadist & Invest Operat, San Cristobal De La Lagu, Spain
[3] Univ La Laguna, Inst Matemat & Aplicac IMAULL, San Cristobal De La Lagu, Spain
[4] Polish Acad Sci, Inst Math, Warsaw, Poland
关键词
modular vector fields; modular class; invariant volume forms; Hamiltonian systems; Poisson-Lie groups; SINGULAR-VALUE DECOMPOSITION; MODULAR CLASS; PRESERVATION; SYSTEMS;
D O I
10.1088/1751-8121/acb116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we discuss several relations between the existence of invariant volume forms for Hamiltonian systems on Poisson-Lie groups and the unimodularity of the Poisson-Lie structure. In particular, we prove that Hamiltonian vector fields on a Lie group endowed with a unimodular Poisson-Lie structure preserve a multiple of any left-invariant volume on the group. Conversely, we also prove that if there exists a Hamiltonian function such that the identity element of the Lie group is a nondegenerate singularity and the associated Hamiltonian vector field preserves a volume form, then the Poisson-Lie structure is necessarily unimodular. Furthermore, we illustrate our theory with different interesting examples, both on semisimple and unimodular Poisson-Lie groups.
引用
收藏
页数:22
相关论文
共 50 条