Poisson–Lie Diffeomorphism Groups

被引:0
|
作者
Ognyan S. Stoyanov
机构
来源
关键词
Poisson–Lie group; diffeomorphism group; infinite jet; classical ; -matrix;
D O I
暂无
中图分类号
学科分类号
摘要
We explicitly construct a class of coboundary Poisson–Lie structures on the group of formal diffeomorphisms of ℝn. Equivalently, these give rise to a class of coboundary triangular Lie bialgebra structures on the Lie algebra Wn of formal vector fields on ℝn. We conjecture that this class accounts for all such coboundary structures. The natural action of the constructed Poisson–Lie diffeomorphism groups gives rise to large classes of compatible Poisson structures on ℝn, thus making it a Poisson space. Moreover, the canonical action of the Poisson–Lie groups FDiff(ℝm) × FDiffℝn) gives rise to classes of compatible Poisson structures on the space J∞(ℝm,ℝn) of infinite jets of smooth maps ℝm → ℝn, which makes it also a Poisson space for this action. Poisson modules of generalized densities are also constructed. Initial steps towards a classification of these structures are taken.
引用
收藏
页码:185 / 223
页数:38
相关论文
共 50 条
  • [41] THE DIFFEOMORPHISM GROUP OF A LIE FOLIATION
    Hector, Gilbert
    Macias-Virgos, Enrique
    Sotelo-Armesto, Antonio
    ANNALES DE L INSTITUT FOURIER, 2011, 61 (01) : 365 - 378
  • [42] QUASI-TRIANGULAR POISSON-LIE GROUPS
    KOSMANNSCHWARZBACH, Y
    LECTURE NOTES IN MATHEMATICS, 1990, 1416 : 161 - 177
  • [43] SYMPLECTIC STRUCTURES ASSOCIATED TO LIE-POISSON GROUPS
    ALEKSEEV, AY
    MALKIN, AZ
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (01) : 147 - 173
  • [44] A convexity theorem for Poisson actions of compact Lie groups
    Flaschka, H
    Ratiu, T
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1996, 29 (06): : 787 - 809
  • [45] b-Structures on Lie groups and Poisson reduction
    Braddell, Roisin
    Kiesenhofer, Anna
    Miranda, Eva
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 175
  • [46] LIE QUASI-BIALGEBRAS AND QUASI-POISSON LIE-GROUPS
    KOSMANNSCHWARZBACH, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (05): : 391 - 394
  • [47] Triangular Poisson structures on Lie groups and symplectic reduction
    Hodges, TJ
    Yakimov, M
    Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 123 - 134
  • [48] Pentagram maps and refactorization in Poisson-Lie groups
    Izosimov, Anton
    ADVANCES IN MATHEMATICS, 2022, 404
  • [49] POISSON SPACES OF LIE SEMI-SIMPLE GROUPS
    AZENCOTT, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (19): : 970 - &
  • [50] (1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
    Ballesteros, A
    Herranz, FJ
    Parashar, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (17): : 3445 - 3465