Distributionally robust polynomial chance-constraints under mixture ambiguity sets

被引:0
|
作者
Jean B. Lasserre
Tillmann Weisser
机构
[1] University of Toulouse,LAAS
[2] Los Alamos National Laboratory,CNRS and Institute of Mathematics
来源
Mathematical Programming | 2021年 / 185卷
关键词
90C47; 90C59; 68T37; 90C22; 49M29; 41A29; 65D18;
D O I
暂无
中图分类号
学科分类号
摘要
Given X⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}\subset {\mathbb {R}}^n$$\end{document}, ε∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,1)$$\end{document}, a parametrized family of probability distributions (μa)a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _{{\mathbf {a}}})_{{\mathbf {a}}\in {\mathbf {A}}}$$\end{document} on Ω⊂Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}\subset {\mathbb {R}}^p$$\end{document}, we consider the feasible set Xε∗⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^*_\varepsilon \subset {\mathbf {X}}$$\end{document} associated with the distributionally robust chance-constraint Xε∗={x∈X:Probμ[f(x,ω)>0]>1-ε,∀μ∈Ma},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbf {X}}^*_\varepsilon \,=\,\{{\mathbf {x}}\in {\mathbf {X}}:\,\mathrm{Prob}_\mu [f({\mathbf {x}},{\omega })\,>\,0]> 1-\varepsilon ,\,\forall \mu \in {\mathscr {M}}_{\mathbf {a}}\}, \end{aligned}$$\end{document}where Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all possibles mixtures of distributions μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\mathbf {a}}$$\end{document}, a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}\in {\mathbf {A}}$$\end{document}. For instance and typically, the family Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all mixtures of Gaussian distributions on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} with mean and standard deviation a=(a,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}=(a,\sigma )$$\end{document} in some compact set A⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}\subset {\mathbb {R}}^2$$\end{document}. We provide a sequence of inner approximations Xεd={x∈X:wd(x)<ε}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^d_\varepsilon =\{{\mathbf {x}}\in {\mathbf {X}}:w_d({\mathbf {x}}) <\varepsilon \}$$\end{document}, d∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document}, where wd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_d$$\end{document} is a polynomial of degree d whose vector of coefficients is an optimal solution of a semidefinite program. The size of the latter increases with the degree d. We also obtain the strong and highly desirable asymptotic guarantee that λ(Xε∗\Xεd)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ({\mathbf {X}}^*_\varepsilon {\setminus } {\mathbf {X}}^d_\varepsilon )\rightarrow 0$$\end{document} as d increases, where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is the Lebesgue measure on X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}$$\end{document}. Same results are also obtained for the more intricated case of distributionally robust “joint” chance-constraints. There is a price to pay for this strong asymptotic guarantee which is the scalability of such a numerical scheme, and so far this important drawback makes it limited to problems of modest dimension.
引用
收藏
页码:409 / 453
页数:44
相关论文
共 50 条
  • [41] Distributionally robust chance-constrained operation of distribution grids considering voltage constraints
    Wang, Chao
    Sun, Junjie
    Li, Xinwei
    Yang, Tiankai
    Liu, Wansong
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [42] Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity
    Cheramin, Meysam
    Cheng, Jianqiang
    Jiang, Ruiwei
    Pan, Kai
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1768 - 1794
  • [43] Data-driven approximation of distributionally robust chance constraints using Bayesian credible intervals
    Chen, Zhiping
    Ma, Wentao
    Ji, Bingbing
    OR SPECTRUM, 2025,
  • [44] Convex Reformulation for Two-sided Distributionally Robust Chance Constraints with Inexact Moment Information
    Lun Yang
    Yinliang Xu
    Zheng Xu
    Hongbin Sun
    JournalofModernPowerSystemsandCleanEnergy, 2022, 10 (04) : 1060 - 1065
  • [45] Convex Reformulation for Two-sided Distributionally Robust Chance Constraints with Inexact Moment Information
    Yang, Lun
    Xu, Yinliang
    Xu, Zheng
    Sun, Hongbin
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (04) : 1060 - 1065
  • [46] CVaR-Based Approximations of Wasserstein Distributionally Robust Chance Constraints with Application to Process Scheduling
    Liu, Botong
    Zhang, Qi
    Ge, Xiaolong
    Yuan, Zhihong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (20) : 9562 - 9574
  • [47] Robust model predictive control under chance constraints
    Li, P
    Wendt, M
    Wozny, G
    COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 829 - 834
  • [48] Robust and Chance-Constrained Optimization under Polynomial Uncertainty
    Dabbene, F.
    Feng, C.
    Lagoa, C. M.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 379 - +
  • [49] Multi-period distributionally robust emergency medical service location model with customized ambiguity sets
    Wu, Zhongqi
    Jiang, Hui
    Liang, Xiaoyu
    Zhou, Yangye
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2024, 181
  • [50] Multi-stage distributionally robust convex stochastic optimization with Bayesian-type ambiguity sets
    Ma, Wentao
    Chen, Zhiping
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2024, 100 (02) : 553 - 600